1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 notation "hvbox( h ⊢ break term 46 L1 • ⊑ break [ term 46 g ] break term 46 L2 )"
16 non associative with precedence 45
17 for @{ 'CrSubEqS $h $g $L1 $L2 }.
19 include "basic_2/static/ssta.ma".
20 include "basic_2/computation/cprs.ma".
21 include "basic_2/equivalence/cpcs.ma".
23 (* LOCAL ENVIRONMENT REFINEMENT FOR STRATIFIED STATIC TYPE ASSIGNMENT *******)
25 (* Note: this is not transitive *)
26 inductive lsubss (h:sh) (g:sd h): relation lenv ≝
27 | lsubss_atom: lsubss h g (⋆) (⋆)
28 | lsubss_pair: ∀I,L1,L2,V. lsubss h g L1 L2 →
29 lsubss h g (L1. ⓑ{I} V) (L2. ⓑ{I} V)
30 | lsubss_abbr: ∀L1,L2,V1,V2,W1,W2,l. L1 ⊢ W1 ⬌* W2 →
31 ⦃h, L1⦄ ⊢ V1 •[g] ⦃l+1, W1⦄ → ⦃h, L2⦄ ⊢ W2 •[g] ⦃l, V2⦄ →
32 lsubss h g L1 L2 → lsubss h g (L1. ⓓV1) (L2. ⓛW2)
36 "local environment refinement (stratified static type assigment)"
37 'CrSubEqS h g L1 L2 = (lsubss h g L1 L2).
39 (* Basic inversion lemmas ***************************************************)
41 fact lsubss_inv_atom1_aux: ∀h,g,L1,L2. h ⊢ L1 •⊑[g] L2 → L1 = ⋆ → L2 = ⋆.
42 #h #g #L1 #L2 * -L1 -L2
44 | #I #L1 #L2 #V #_ #H destruct
45 | #L1 #L2 #V1 #V2 #W1 #W2 #l #_ #_ #_ #_ #H destruct
49 lemma lsubss_inv_atom1: ∀h,g,L2. h ⊢ ⋆ •⊑[g] L2 → L2 = ⋆.
50 /2 width=5 by lsubss_inv_atom1_aux/ qed-.
52 fact lsubss_inv_pair1_aux: ∀h,g,L1,L2. h ⊢ L1 •⊑[g] L2 →
53 ∀I,K1,V1. L1 = K1. ⓑ{I} V1 →
54 (∃∃K2. h ⊢ K1 •⊑[g] K2 & L2 = K2. ⓑ{I} V1) ∨
55 ∃∃K2,W1,W2,V2,l. ⦃h, K1⦄ ⊢ V1 •[g] ⦃l+1, W1⦄ & ⦃h, K2⦄ ⊢ W2 •[g] ⦃l, V2⦄ &
56 K1 ⊢ W1 ⬌* W2 & h ⊢ K1 •⊑[g] K2 & L2 = K2. ⓛW2 & I = Abbr.
57 #h #g #L1 #L2 * -L1 -L2
58 [ #J #K1 #U1 #H destruct
59 | #I #L1 #L2 #V #HL12 #J #K1 #U1 #H destruct /3 width=3/
60 | #L1 #L2 #V1 #V2 #W1 #W2 #l #HW12 #HVW1 #HWV2 #HL12 #J #K1 #U1 #H destruct /3 width=10/
64 lemma lsubss_inv_pair1: ∀h,g,I,K1,L2,V1. h ⊢ K1. ⓑ{I} V1 •⊑[g] L2 →
65 (∃∃K2. h ⊢ K1 •⊑[g] K2 & L2 = K2. ⓑ{I} V1) ∨
66 ∃∃K2,W1,W2,V2,l. ⦃h, K1⦄ ⊢ V1 •[g] ⦃l+1, W1⦄ & ⦃h, K2⦄ ⊢ W2 •[g] ⦃l, V2⦄ &
67 K1 ⊢ W1 ⬌* W2 & h ⊢ K1 •⊑[g] K2 & L2 = K2. ⓛW2 & I = Abbr.
68 /2 width=3 by lsubss_inv_pair1_aux/ qed-.
70 fact lsubss_inv_atom2_aux: ∀h,g,L1,L2. h ⊢ L1 •⊑[g] L2 → L2 = ⋆ → L1 = ⋆.
71 #h #g #L1 #L2 * -L1 -L2
73 | #I #L1 #L2 #V #_ #H destruct
74 | #L1 #L2 #V1 #V2 #W1 #W2 #l #_ #_ #_ #_ #H destruct
78 lemma lsubss_inv_atom2: ∀h,g,L1. h ⊢ L1 •⊑[g] ⋆ → L1 = ⋆.
79 /2 width=5 by lsubss_inv_atom2_aux/ qed-.
81 fact lsubss_inv_pair2_aux: ∀h,g,L1,L2. h ⊢ L1 •⊑[g] L2 →
82 ∀I,K2,W2. L2 = K2. ⓑ{I} W2 →
83 (∃∃K1. h ⊢ K1 •⊑[g] K2 & L1 = K1. ⓑ{I} W2) ∨
84 ∃∃K1,W1,V1,V2,l. ⦃h, K1⦄ ⊢ V1 •[g] ⦃l+1, W1⦄ & ⦃h, K2⦄ ⊢ W2 •[g] ⦃l, V2⦄ &
85 K1 ⊢ W1 ⬌* W2 & h ⊢ K1 •⊑[g] K2 & L1 = K1. ⓓV1 & I = Abst.
86 #h #g #L1 #L2 * -L1 -L2
87 [ #J #K2 #U2 #H destruct
88 | #I #L1 #L2 #V #HL12 #J #K2 #U2 #H destruct /3 width=3/
89 | #L1 #L2 #V1 #V2 #W1 #W2 #l #HW12 #HVW1 #HWV2 #HL12 #J #K2 #U2 #H destruct /3 width=10/
93 lemma lsubss_inv_pair2: ∀h,g,I,L1,K2,W2. h ⊢ L1 •⊑[g] K2. ⓑ{I} W2 →
94 (∃∃K1. h ⊢ K1 •⊑[g] K2 & L1 = K1. ⓑ{I} W2) ∨
95 ∃∃K1,W1,V1,V2,l. ⦃h, K1⦄ ⊢ V1 •[g] ⦃l+1, W1⦄ & ⦃h, K2⦄ ⊢ W2 •[g] ⦃l, V2⦄ &
96 K1 ⊢ W1 ⬌* W2 & h ⊢ K1 •⊑[g] K2 & L1 = K1. ⓓV1 & I = Abst.
97 /2 width=3 by lsubss_inv_pair2_aux/ qed-.
99 (* Basic_forward lemmas *****************************************************)
101 axiom lsubss_fwd_lsubx: ∀h,g,L1,L2. h ⊢ L1 •⊑[g] L2 → L1 ⓝ⊑ L2.
103 #h #g #L1 #L2 #H elim H -L1 -L2 // /2 width=1/
106 (* Basic properties *********************************************************)
108 lemma lsubss_refl: ∀h,g,L. h ⊢ L •⊑[g] L.
109 #h #g #L elim L -L // /2 width=1/
112 lemma lsubss_cprs_trans: ∀h,g,L1,L2. h ⊢ L1 •⊑[g] L2 →
113 ∀T1,T2. L2 ⊢ T1 ➡* T2 → L1 ⊢ T1 ➡* T2.
114 /3 width=5 by lsubss_fwd_lsubx, lsubx_cprs_trans/