1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/notation/relations/lrsubeqv_5.ma".
16 include "basic_2/dynamic/shnv.ma".
18 (* LOCAL ENVIRONMENT REFINEMENT FOR STRATIFIED NATIVE VALIDITY **************)
20 (* Note: this is not transitive *)
21 inductive lsubsv (h) (o) (G): relation lenv ≝
22 | lsubsv_atom: lsubsv h o G (⋆) (⋆)
23 | lsubsv_pair: ∀I,L1,L2,V. lsubsv h o G L1 L2 →
24 lsubsv h o G (L1.ⓑ{I}V) (L2.ⓑ{I}V)
25 | lsubsv_beta: ∀L1,L2,W,V,d1. ⦃G, L1⦄ ⊢ ⓝW.V ¡[h, o, d1] → ⦃G, L2⦄ ⊢ W ¡[h, o] →
26 ⦃G, L1⦄ ⊢ V ▪[h, o] d1+1 → ⦃G, L2⦄ ⊢ W ▪[h, o] d1 →
27 lsubsv h o G L1 L2 → lsubsv h o G (L1.ⓓⓝW.V) (L2.ⓛW)
31 "local environment refinement (stratified native validity)"
32 'LRSubEqV h o G L1 L2 = (lsubsv h o G L1 L2).
34 (* Basic inversion lemmas ***************************************************)
36 fact lsubsv_inv_atom1_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → L1 = ⋆ → L2 = ⋆.
37 #h #o #G #L1 #L2 * -L1 -L2
39 | #I #L1 #L2 #V #_ #H destruct
40 | #L1 #L2 #W #V #d1 #_ #_ #_ #_ #_ #H destruct
44 lemma lsubsv_inv_atom1: ∀h,o,G,L2. G ⊢ ⋆ ⫃¡[h, o] L2 → L2 = ⋆.
45 /2 width=6 by lsubsv_inv_atom1_aux/ qed-.
47 fact lsubsv_inv_pair1_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 →
48 ∀I,K1,X. L1 = K1.ⓑ{I}X →
49 (∃∃K2. G ⊢ K1 ⫃¡[h, o] K2 & L2 = K2.ⓑ{I}X) ∨
50 ∃∃K2,W,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, o, d1] & ⦃G, K2⦄ ⊢ W ¡[h, o] &
51 ⦃G, K1⦄ ⊢ V ▪[h, o] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d1 &
53 I = Abbr & L2 = K2.ⓛW & X = ⓝW.V.
54 #h #o #G #L1 #L2 * -L1 -L2
55 [ #J #K1 #X #H destruct
56 | #I #L1 #L2 #V #HL12 #J #K1 #X #H destruct /3 width=3 by ex2_intro, or_introl/
57 | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #HL12 #J #K1 #X #H destruct /3 width=11 by or_intror, ex8_4_intro/
61 lemma lsubsv_inv_pair1: ∀h,o,I,G,K1,L2,X. G ⊢ K1.ⓑ{I}X ⫃¡[h, o] L2 →
62 (∃∃K2. G ⊢ K1 ⫃¡[h, o] K2 & L2 = K2.ⓑ{I}X) ∨
63 ∃∃K2,W,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, o, d1] & ⦃G, K2⦄ ⊢ W ¡[h, o] &
64 ⦃G, K1⦄ ⊢ V ▪[h, o] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d1 &
66 I = Abbr & L2 = K2.ⓛW & X = ⓝW.V.
67 /2 width=3 by lsubsv_inv_pair1_aux/ qed-.
69 fact lsubsv_inv_atom2_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → L2 = ⋆ → L1 = ⋆.
70 #h #o #G #L1 #L2 * -L1 -L2
72 | #I #L1 #L2 #V #_ #H destruct
73 | #L1 #L2 #W #V #d1 #_ #_ #_ #_ #_ #H destruct
77 lemma lsubsv_inv_atom2: ∀h,o,G,L1. G ⊢ L1 ⫃¡[h, o] ⋆ → L1 = ⋆.
78 /2 width=6 by lsubsv_inv_atom2_aux/ qed-.
80 fact lsubsv_inv_pair2_aux: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 →
81 ∀I,K2,W. L2 = K2.ⓑ{I}W →
82 (∃∃K1. G ⊢ K1 ⫃¡[h, o] K2 & L1 = K1.ⓑ{I}W) ∨
83 ∃∃K1,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, o, d1] & ⦃G, K2⦄ ⊢ W ¡[h, o] &
84 ⦃G, K1⦄ ⊢ V ▪[h, o] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d1 &
85 G ⊢ K1 ⫃¡[h, o] K2 & I = Abst & L1 = K1.ⓓⓝW.V.
86 #h #o #G #L1 #L2 * -L1 -L2
87 [ #J #K2 #U #H destruct
88 | #I #L1 #L2 #V #HL12 #J #K2 #U #H destruct /3 width=3 by ex2_intro, or_introl/
89 | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #HL12 #J #K2 #U #H destruct /3 width=8 by or_intror, ex7_3_intro/
93 lemma lsubsv_inv_pair2: ∀h,o,I,G,L1,K2,W. G ⊢ L1 ⫃¡[h, o] K2.ⓑ{I}W →
94 (∃∃K1. G ⊢ K1 ⫃¡[h, o] K2 & L1 = K1.ⓑ{I}W) ∨
95 ∃∃K1,V,d1. ⦃G, K1⦄ ⊢ ⓝW.V ¡[h, o, d1] & ⦃G, K2⦄ ⊢ W ¡[h, o] &
96 ⦃G, K1⦄ ⊢ V ▪[h, o] d1+1 & ⦃G, K2⦄ ⊢ W ▪[h, o] d1 &
97 G ⊢ K1 ⫃¡[h, o] K2 & I = Abst & L1 = K1.ⓓⓝW.V.
98 /2 width=3 by lsubsv_inv_pair2_aux/ qed-.
100 (* Basic forward lemmas *****************************************************)
102 lemma lsubsv_fwd_lsubr: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 → L1 ⫃ L2.
103 #h #o #G #L1 #L2 #H elim H -L1 -L2 /2 width=1 by lsubr_pair, lsubr_beta/
106 (* Basic properties *********************************************************)
108 lemma lsubsv_refl: ∀h,o,G,L. G ⊢ L ⫃¡[h, o] L.
109 #h #o #G #L elim L -L /2 width=1 by lsubsv_pair/
112 lemma lsubsv_cprs_trans: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 →
113 ∀T1,T2. ⦃G, L2⦄ ⊢ T1 ➡* T2 → ⦃G, L1⦄ ⊢ T1 ➡* T2.
114 /3 width=6 by lsubsv_fwd_lsubr, lsubr_cprs_trans/
117 (* Note: the constant 0 cannot be generalized *)
118 lemma lsubsv_drop_O1_conf: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 →
119 ∀K1,b,k. ⬇[b, 0, k] L1 ≘ K1 →
120 ∃∃K2. G ⊢ K1 ⫃¡[h, o] K2 & ⬇[b, 0, k] L2 ≘ K2.
121 #h #o #G #L1 #L2 #H elim H -L1 -L2
122 [ /2 width=3 by ex2_intro/
123 | #I #L1 #L2 #V #_ #IHL12 #K1 #b #k #H
124 elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1
126 elim (IHL12 L1 b 0) -IHL12 // #X #HL12 #H
127 <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubsv_pair, drop_pair, ex2_intro/
128 | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/
130 | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #_ #IHL12 #K1 #b #k #H
131 elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1
133 elim (IHL12 L1 b 0) -IHL12 // #X #HL12 #H
134 <(drop_inv_O2 … H) in HL12; -H /3 width=4 by lsubsv_beta, drop_pair, ex2_intro/
135 | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/
140 (* Note: the constant 0 cannot be generalized *)
141 lemma lsubsv_drop_O1_trans: ∀h,o,G,L1,L2. G ⊢ L1 ⫃¡[h, o] L2 →
142 ∀K2,b, k. ⬇[b, 0, k] L2 ≘ K2 →
143 ∃∃K1. G ⊢ K1 ⫃¡[h, o] K2 & ⬇[b, 0, k] L1 ≘ K1.
144 #h #o #G #L1 #L2 #H elim H -L1 -L2
145 [ /2 width=3 by ex2_intro/
146 | #I #L1 #L2 #V #_ #IHL12 #K2 #b #k #H
147 elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2
149 elim (IHL12 L2 b 0) -IHL12 // #X #HL12 #H
150 <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubsv_pair, drop_pair, ex2_intro/
151 | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/
153 | #L1 #L2 #W #V #d1 #HWV #HW #HVd1 #HWd1 #_ #IHL12 #K2 #b #k #H
154 elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2
156 elim (IHL12 L2 b 0) -IHL12 // #X #HL12 #H
157 <(drop_inv_O2 … H) in HL12; -H /3 width=4 by lsubsv_beta, drop_pair, ex2_intro/
158 | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/