]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc/snta/lsubsn_ldrop.etc
- extended multiple substitutions now uses bounds in ynat (ie. they
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / snta / lsubsn_ldrop.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/dynamic/lsubsn.ma".
16
17 (* LOCAL ENVIRONMENT REFINEMENT FOR STRATIFIED NATIVE TYPE ASSIGNMENT *******)
18
19 (* Properties concerning basic local environment slicing ********************)
20
21 (* Note: the constant 0 cannot be generalized *)
22 lemma lsubsn_ldrop_O1_conf: ∀h,L1,L2. h ⊢ L1 :⊑[] L2 →
23                             ∀K1,e. ⇩[0, e] L1 ≡ K1 →
24                             ∃∃K2. h ⊢ K1 :⊑[] K2 & ⇩[0, e] L2 ≡ K2.
25 #h #L1 #L2 #H elim H -L1 -L2
26 [ /2 width=3/
27 | #I #L1 #L2 #V #_ #IHL12 #K1 #e #H
28   elim (ldrop_inv_O1 … H) -H * #He #HLK1
29   [ destruct
30     elim (IHL12 L1 0 ?) -IHL12 // #X #HL12 #H
31     <(ldrop_inv_refl … H) in HL12; -H /3 width=3/
32   | elim (IHL12 … HLK1) -L1 /3 width=3/
33   ]
34 | #L1 #L2 #V #W #l #H1VW #H2VW #_ #IHL12 #K1 #e #H
35   elim (ldrop_inv_O1 … H) -H * #He #HLK1
36   [ destruct
37     elim (IHL12 L1 0 ?) -IHL12 // #X #HL12 #H
38     <(ldrop_inv_refl … H) in HL12; -H /3 width=3/
39   | elim (IHL12 … HLK1) -L1 /3 width=3/
40   ]
41 ]
42 qed.
43
44 (* Note: the constant 0 cannot be generalized *)
45 lemma lsubsn_ldrop_O1_trans: ∀h,L1,L2. h ⊢ L1 :⊑[] L2 →
46                              ∀K2,e. ⇩[0, e] L2 ≡ K2 →
47                              ∃∃K1. h ⊢ K1 :⊑[] K2 & ⇩[0, e] L1 ≡ K1.
48 #h #L1 #L2 #H elim H -L1 -L2
49 [ /2 width=3/
50 | #I #L1 #L2 #V #_ #IHL12 #K2 #e #H
51   elim (ldrop_inv_O1 … H) -H * #He #HLK2
52   [ destruct
53     elim (IHL12 L2 0 ?) -IHL12 // #X #HL12 #H
54     <(ldrop_inv_refl … H) in HL12; -H /3 width=3/
55   | elim (IHL12 … HLK2) -L2 /3 width=3/
56   ]
57 | #L1 #L2 #V #W #l #H1VW #H2VW #_ #IHL12 #K2 #e #H
58   elim (ldrop_inv_O1 … H) -H * #He #HLK2
59   [ destruct
60     elim (IHL12 L2 0 ?) -IHL12 // #X #HL12 #H
61     <(ldrop_inv_refl … H) in HL12; -H /3 width=3/
62   | elim (IHL12 … HLK2) -L2 /3 width=3/
63   ]
64 ]
65 qed.