1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/relocation/ldrop_ldrop.ma".
16 include "basic_2/static/ssta.ma".
18 (* STRATIFIED STATIC TYPE ASSIGNMENT ON TERMS *******************************)
20 (* Properties on relocation *************************************************)
22 lemma ssta_lift: ∀h,g,G,L1,T1,U1,l. ⦃G, L1⦄ ⊢ T1 •[h, g] ⦃l, U1⦄ →
23 ∀L2,d,e. ⇩[d, e] L2 ≡ L1 → ∀T2. ⇧[d, e] T1 ≡ T2 →
24 ∀U2. ⇧[d, e] U1 ≡ U2 → ⦃G, L2⦄ ⊢ T2 •[h, g] ⦃l, U2⦄.
25 #h #g #G #L1 #T1 #U1 #l #H elim H -G -L1 -T1 -U1 -l
26 [ #G #L1 #k #l #Hkl #L2 #d #e #HL21 #X1 #H1 #X2 #H2
27 >(lift_inv_sort1 … H1) -X1
28 >(lift_inv_sort1 … H2) -X2 /2 width=1/
29 | #G #L1 #K1 #V1 #W1 #W #i #l #HLK1 #_ #HW1 #IHVW1 #L2 #d #e #HL21 #X #H #U2 #HWU2
30 elim (lift_inv_lref1 … H) * #Hid #H destruct
31 [ elim (lift_trans_ge … HW1 … HWU2 ?) -W // #W2 #HW12 #HWU2
32 elim (ldrop_trans_le … HL21 … HLK1 ?) -L1 /2 width=2/ #X #HLK2 #H
33 elim (ldrop_inv_skip2 … H ?) -H /2 width=1/ -Hid #K2 #V2 #HK21 #HV12 #H destruct
35 | lapply (lift_trans_be … HW1 … HWU2 ? ?) -W // /2 width=1/ #HW1U2
36 lapply (ldrop_trans_ge … HL21 … HLK1 ?) -L1 // -Hid /3 width=8/
38 | #G #L1 #K1 #W1 #V1 #W #i #l #HLK1 #_ #HW1 #IHWV1 #L2 #d #e #HL21 #X #H #U2 #HWU2
39 elim (lift_inv_lref1 … H) * #Hid #H destruct
40 [ elim (lift_trans_ge … HW1 … HWU2 ?) -W // <minus_plus #W #HW1 #HWU2
41 elim (ldrop_trans_le … HL21 … HLK1 ?) -L1 /2 width=2/ #X #HLK2 #H
42 elim (ldrop_inv_skip2 … H ?) -H /2 width=1/ -Hid #K2 #W2 #HK21 #HW12 #H destruct
43 lapply (lift_mono … HW1 … HW12) -HW1 #H destruct
44 elim (lift_total V1 (d-i-1) e) /3 width=8/
45 | lapply (lift_trans_be … HW1 … HWU2 ? ?) -W // /2 width=1/ #HW1U2
46 lapply (ldrop_trans_ge … HL21 … HLK1 ?) -L1 // -Hid /3 width=8/
48 | #a #I #G #L1 #V1 #T1 #U1 #l #_ #IHTU1 #L2 #d #e #HL21 #X1 #H1 #X2 #H2
49 elim (lift_inv_bind1 … H1) -H1 #V2 #T2 #HV12 #HT12 #H destruct
50 elim (lift_inv_bind1 … H2) -H2 #X #U2 #H1 #HU12 #H2 destruct
51 lapply (lift_mono … H1 … HV12) -H1 #H destruct /4 width=5/
52 | #G #L1 #V1 #T1 #U1 #l #_ #IHTU1 #L2 #d #e #HL21 #X1 #H1 #X2 #H2
53 elim (lift_inv_flat1 … H1) -H1 #V2 #T2 #HV12 #HT12 #H destruct
54 elim (lift_inv_flat1 … H2) -H2 #X #U2 #H1 #HU12 #H2 destruct
55 lapply (lift_mono … H1 … HV12) -H1 #H destruct /4 width=5/
56 | #G #L1 #W1 #T1 #U1 #l #_ #IHTU1 #L2 #d #e #HL21 #X #H #U2 #HU12
57 elim (lift_inv_flat1 … H) -H #W2 #T2 #HW12 #HT12 #H destruct /3 width=5/
61 lemma ssta_inv_lift1: ∀h,g,G,L2,T2,U2,l. ⦃G, L2⦄ ⊢ T2 •[h, g] ⦃l, U2⦄ →
62 ∀L1,d,e. ⇩[d, e] L2 ≡ L1 → ∀T1. ⇧[d, e] T1 ≡ T2 →
63 ∃∃U1. ⦃G, L1⦄ ⊢ T1 •[h, g] ⦃l, U1⦄ & ⇧[d, e] U1 ≡ U2.
64 #h #g #G #L2 #T2 #U2 #l #H elim H -G -L2 -T2 -U2 -l
65 [ #G #L2 #k #l #Hkl #L1 #d #e #_ #X #H
66 >(lift_inv_sort2 … H) -X /3 width=3/
67 | #G #L2 #K2 #V2 #W2 #W #i #l #HLK2 #HVW2 #HW2 #IHVW2 #L1 #d #e #HL21 #X #H
68 elim (lift_inv_lref2 … H) * #Hid #H destruct [ -HVW2 | -IHVW2 ]
69 [ elim (ldrop_conf_lt … HL21 … HLK2 ?) -L2 // #K1 #V1 #HLK1 #HK21 #HV12
70 elim (IHVW2 … HK21 … HV12) -K2 -V2 #W1 #HVW1 #HW12
71 elim (lift_trans_le … HW12 … HW2 ?) -W2 // >minus_plus <plus_minus_m_m // -Hid /3 width=6/
72 | lapply (ldrop_conf_ge … HL21 … HLK2 ?) -L2 // #HL1K2
73 elim (le_inv_plus_l … Hid) -Hid #Hdie #ei
74 elim (lift_split … HW2 d (i-e+1) ? ? ?) -HW2 // [3: /2 width=1/ ]
75 [ #W0 #HW20 <le_plus_minus_comm // >minus_minus_m_m /2 width=1/ /3 width=6/
76 | <le_plus_minus_comm //
79 | #G #L2 #K2 #W2 #V2 #W #i #l #HLK2 #HWV2 #HW2 #IHWV2 #L1 #d #e #HL21 #X #H
80 elim (lift_inv_lref2 … H) * #Hid #H destruct [ -HWV2 | -IHWV2 ]
81 [ elim (ldrop_conf_lt … HL21 … HLK2 ?) -L2 // #K1 #W1 #HLK1 #HK21 #HW12
82 elim (IHWV2 … HK21 … HW12) -K2 #V1 #HWV1 #_
83 elim (lift_trans_le … HW12 … HW2 ?) -W2 // >minus_plus <plus_minus_m_m // -Hid /3 width=6/
84 | lapply (ldrop_conf_ge … HL21 … HLK2 ?) -L2 // #HL1K2
85 elim (le_inv_plus_l … Hid) -Hid #Hdie #ei
86 elim (lift_split … HW2 d (i-e+1) ? ? ?) -HW2 // [3: /2 width=1/ ]
87 [ #W0 #HW20 <le_plus_minus_comm // >minus_minus_m_m /2 width=1/ /3 width=6/
88 | <le_plus_minus_comm //
91 | #a #I #G #L2 #V2 #T2 #U2 #l #_ #IHTU2 #L1 #d #e #HL21 #X #H
92 elim (lift_inv_bind2 … H) -H #V1 #T1 #HV12 #HT12 #H destruct
93 elim (IHTU2 (L1.ⓑ{I}V1) … HT12) -IHTU2 -HT12 /2 width=1/ -HL21 /3 width=5/
94 | #G #L2 #V2 #T2 #U2 #l #_ #IHTU2 #L1 #d #e #HL21 #X #H
95 elim (lift_inv_flat2 … H) -H #V1 #T1 #HV12 #HT12 #H destruct
96 elim (IHTU2 … HL21 … HT12) -L2 -HT12 /3 width=5/
97 | #G #L2 #W2 #T2 #U2 #l #_ #IHTU2 #L1 #d #e #HL21 #X #H
98 elim (lift_inv_flat2 … H) -H #W1 #T1 #HW12 #HT12 #H destruct
99 elim (IHTU2 … HL21 … HT12) -L2 -HT12 /3 width=3/
103 (* Advanced forvard lemmas **************************************************)
105 lemma ssta_fwd_correct: ∀h,g,G,L,T,U,l. ⦃G, L⦄ ⊢ T •[h, g] ⦃l, U⦄ →
106 ∃T0. ⦃G, L⦄ ⊢ U •[h, g] ⦃l-1, T0⦄.
107 #h #g #G #L #T #U #l #H elim H -G -L -T -U -l
109 | #G #L #K #V #W #W0 #i #l #HLK #_ #HW0 * #V0 #HWV0
110 lapply (ldrop_fwd_ldrop2 … HLK) -HLK #HLK
111 elim (lift_total V0 0 (i+1)) /3 width=10/
112 | #G #L #K #W #V #V0 #i #l #HLK #HWV #HWV0 #_
113 lapply (ldrop_fwd_ldrop2 … HLK) -HLK #HLK
114 elim (lift_total V 0 (i+1)) /3 width=10/
115 | #a #I #G #L #V #T #U #l #_ * /3 width=2/
116 | #G #L #V #T #U #l #_ * #T0 #HUT0 /3 width=2/
117 | #G #L #W #T #U #l #_ * /2 width=2/