1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/static/ssta_lift.ma".
17 (* STRATIFIED STATIC TYPE ASSIGNMENT ON TERMS *******************************)
19 (* Main properties **********************************************************)
21 theorem ssta_mono: ∀h,g,G,L,T,U1,l1. ⦃G, L⦄ ⊢ T •[h, g] ⦃l1, U1⦄ →
22 ∀U2,l2. ⦃G, L⦄ ⊢ T •[h, g] ⦃l2, U2⦄ → l1 = l2 ∧ U1 = U2.
23 #h #g #G #L #T #U1 #l1 #H elim H -G -L -T -U1 -l1
24 [ #G #L #k #l #Hkl #X #l2 #H
25 elim (ssta_inv_sort1 … H) -H #Hkl2 #H destruct
26 >(deg_mono … Hkl2 … Hkl) -g -L -l2 /2 width=1/
27 | #G #L #K #V #W #U1 #i #l1 #HLK #_ #HWU1 #IHVW #U2 #l2 #H
28 elim (ssta_inv_lref1 … H) -H * #K0 #V0 #W0 [2: #l0] #HLK0 #HVW0 #HW0U2
29 lapply (ldrop_mono … HLK0 … HLK) -HLK -HLK0 #H destruct
30 lapply (IHVW … HVW0) -IHVW -HVW0 * #H1 #H2 destruct
31 >(lift_mono … HWU1 … HW0U2) -W0 -U1 /2 width=1/
32 | #G #L #K #W #V #U1 #i #l1 #HLK #_ #HWU1 #IHWV #U2 #l2 #H
33 elim (ssta_inv_lref1 … H) -H * #K0 #W0 #V0 [2: #l0 ] #HLK0 #HWV0 #HV0U2
34 lapply (ldrop_mono … HLK0 … HLK) -HLK -HLK0 #H destruct
35 lapply (IHWV … HWV0) -IHWV -HWV0 * #H1 #H2 destruct
36 >(lift_mono … HWU1 … HV0U2) -W -U1 /2 width=1/
37 | #a #I #G #L #V #T #U1 #l1 #_ #IHTU1 #X #l2 #H
38 elim (ssta_inv_bind1 … H) -H #U2 #HTU2 #H destruct
39 elim (IHTU1 … HTU2) -T /3 width=1/
40 | #G #L #V #T #U1 #l1 #_ #IHTU1 #X #l2 #H
41 elim (ssta_inv_appl1 … H) -H #U2 #HTU2 #H destruct
42 elim (IHTU1 … HTU2) -T /3 width=1/
43 | #G #L #W1 #T #U1 #l1 #_ #IHTU1 #U2 #l2 #H
44 lapply (ssta_inv_cast1 … H) -H #HTU2
45 elim (IHTU1 … HTU2) -T /2 width=1/
49 (* Advanced inversion lemmas ************************************************)
51 lemma ssta_inv_refl_pos: ∀h,g,G,L,T,l. ⦃G, L⦄ ⊢ T •[h, g] ⦃l+1, T⦄ → ⊥.
52 #h #g #G #L #T #l #HTT
53 elim (ssta_fwd_correct … HTT) <minus_plus_m_m #U #HTU
54 elim (ssta_mono … HTU … HTT) -h -L #H #_ -T -U
55 elim (plus_xySz_x_false 0 l 0 ?) //