]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc/xpr/xpr_lift.etc
- basic_2: induction for preservation results now uses supclosure
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / xpr / xpr_lift.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/static/ssta_lift.ma".
16 include "basic_2/reducibility/cpr_lift.ma".
17 include "basic_2/reducibility/xpr.ma".
18
19 (* EXTENDED PARALLEL REDUCTION ON TERMS *************************************)
20
21 (* Advanced inversion lemmas ************************************************)
22
23 lemma xpr_inv_abst1: ∀h,g,a,L,V1,T1,U2. ⦃h, L⦄ ⊢ ⓛ{a}V1.T1 •➡[g] U2 →
24                      ∃∃V2,T2. L ⊢ V1 ➡ V2 & ⦃h, L. ⓛV1⦄ ⊢ T1 •➡[g] T2 &
25                               U2 = ⓛ{a}V2. T2.
26 #h #g #a #L #V1 #T1 #U2 *
27 [ #H elim (cpr_inv_abst1 … H Abst V1) /3 width=5/
28 | #l #H elim (ssta_inv_bind1 … H) /3 width=5/
29 ]
30 qed-.
31
32 (* Relocation properties ****************************************************)
33
34 lemma xpr_lift: ∀L,K,d,e. ⇩[d, e] L ≡ K →
35                 ∀T1,U1. ⇧[d, e] T1 ≡ U1 → ∀T2,U2. ⇧[d, e] T2 ≡ U2 →
36                 ∀h,g. ⦃h, K⦄ ⊢ T1 •➡[g] T2 → ⦃h, L⦄ ⊢ U1 •➡[g] U2.
37 #L #K #d #e #HLK #T1 #U1 #HTU1 #T2 #U2 #HTU2 #h #g *
38 /3 width=9/ /3 width=10/
39 qed.
40
41 lemma xpr_inv_lift1: ∀L,K,d,e. ⇩[d, e] L ≡ K →
42                      ∀T1,U1. ⇧[d, e] T1 ≡ U1 → ∀h,g,U2. ⦃h, L⦄ ⊢ U1 •➡[g] U2 →
43                      ∃∃T2. ⇧[d, e] T2 ≡ U2 & ⦃h, K⦄ ⊢ T1 •➡[g] T2.
44 #L #K #d #e #HLK #T1 #U1 #HTU1 #h #g #U2 * [ #HU12 | #l #HU12 ]
45 [ elim (cpr_inv_lift1 … HLK … HTU1 … HU12) -L -U1 /3 width=3/
46 | elim (ssta_inv_lift1 … HU12 … HLK … HTU1) -L -U1 /3 width=4/
47 ]
48 qed-.