]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc/xpr/xprs_lift.etc
- basic_2: induction for preservation results now uses supclosure
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc / xpr / xprs_lift.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/reducibility/xpr_lift.ma".
16 include "basic_2/computation/cprs.ma".
17 include "basic_2/computation/xprs.ma".
18
19 (* EXTENDED PARALLEL COMPUTATION ON TERMS ***********************************)
20
21 (* Advanced forward lemmas **************************************************)
22
23 lemma xprs_fwd_abst1: ∀h,g,a,L,V1,T1,U2. ⦃h, L⦄ ⊢ ⓛ{a}V1. T1 •➡*[g] U2 →
24                       ∃∃V2,T2. L ⊢ V1 ➡* V2 & U2 = ⓛ{a}V2. T2.
25 #h #g #a #L #V1 #T1 #U2 #H @(xprs_ind … H) -U2 /2 width=4/
26 #U #U2 #_ #HU2 * #V #T #HV1 #H destruct
27 elim (xpr_inv_abst1 … HU2) -HU2 #V2 #T2 #HV2 #_ #H destruct /3 width=4/
28 qed-.
29
30 (* Relocation properties ****************************************************)
31
32 lemma xprs_lift: ∀L,K,d,e. ⇩[d, e] L ≡ K → ∀T1,U1. ⇧[d, e] T1 ≡ U1 →
33                  ∀h,g,T2. ⦃h, K⦄ ⊢ T1 •➡*[g] T2 → ∀U2. ⇧[d, e] T2 ≡ U2 →
34                  ⦃h, L⦄ ⊢ U1 •➡*[g] U2.
35 #L #K #d #e #HLK #T1 #U1 #HTU1 #h #g #T2 #HT12 @(xprs_ind … HT12) -T2
36 [ -HLK #T2 #HT12
37    <(lift_mono … HTU1 … HT12) -T1 //
38 | -HTU1 #T #T2 #_ #HT2 #IHT2 #U2 #HTU2
39   elim (lift_total T d e) #U #HTU
40   lapply (xpr_lift … HLK … HTU … HTU2 … HT2) -T2 -HLK /3 width=3/
41 ]
42 qed.
43
44 lemma xprs_inv_lift1: ∀L,K,d,e. ⇩[d, e] L ≡ K →
45                       ∀T1,U1. ⇧[d, e] T1 ≡ U1 → ∀h,g,U2. ⦃h, L⦄ ⊢ U1 •➡*[g] U2 →
46                       ∃∃T2. ⇧[d, e] T2 ≡ U2 & ⦃h, K⦄ ⊢ T1 •➡*[g] T2.
47 #L #K #d #e #HLK #T1 #U1 #HTU1 #h #g #U2 #HU12 @(xprs_ind … HU12) -U2 /2 width=3/
48 -HTU1 #U #U2 #_ #HU2 * #T #HTU #HT1
49 elim (xpr_inv_lift1 … HLK … HTU … HU2) -U -HLK /3 width=5/
50 qed.