]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/etc_2A1/fpn/fpns.etc
- equivalene of tc_lfxs and lex + lfeq proved
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / etc_2A1 / fpn / fpns.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/btpredsnstar_8.ma".
16 include "basic_2/reduction/fpn.ma".
17
18 (* COMPUTATION FOR "BIG TREE" NORMAL FORMS **********************************)
19
20 definition fpns: ∀h. sd h → tri_relation genv lenv term ≝
21                  λh,g. tri_TC … (fpn h g).
22
23 interpretation
24    "computation for 'big tree' normal forms (closure)"
25    'BTPRedSnStar h g G1 L1 T1 G2 L2 T2 = (fpns h g G1 L1 T1 G2 L2 T2).
26
27 (* Basic eliminators ********************************************************)
28
29 lemma fpns_ind: ∀h,g,G1,L1,T1. ∀R:relation3 …. R G1 L1 T1 →
30                 (∀G,G2,L,L2,T,T2. ⦃G1, L1, T1⦄ ⊢ ⋕➡*[h, g] ⦃G, L, T⦄ → ⦃G, L, T⦄ ⊢ ⋕➡[h, g] ⦃G2, L2, T2⦄ → R G L T → R G2 L2 T2) →
31                 ∀G2,L2,T2. ⦃G1, L1, T1⦄ ⊢ ⋕➡*[h, g] ⦃G2, L2, T2⦄ → R G2 L2 T2.
32 #h #g #G1 #L1 #T1 #R #IH1 #IH2 #G2 #L2 #T2 #H
33 lapply (tri_TC_star_ind … IH1 IH2 G2 L2 T2 H) //
34 qed-.
35
36 lemma fpns_ind_dx: ∀h,g,G2,L2,T2. ∀R:relation3 …. R G2 L2 T2 →
37                    (∀G1,G,L1,L,T1,T. ⦃G1, L1, T1⦄ ⊢ ⋕➡[h, g] ⦃G, L, T⦄ → ⦃G, L, T⦄ ⊢ ⋕➡*[h, g] ⦃G2, L2, T2⦄ → R G L T → R G1 L1 T1) →
38                    ∀G1,L1,T1. ⦃G1, L1, T1⦄ ⊢ ⋕➡*[h, g] ⦃G2, L2, T2⦄ → R G1 L1 T1.
39 #h #g #G2 #L2 #T2 #R #IH1 #IH2 #G1 #L1 #T1 #H
40 @(tri_TC_star_ind_dx … IH1 IH2 G1 L1 T1 H) //
41 qed-.
42
43 (* Basic_properties *********************************************************)
44
45 lemma fpns_refl: ∀h,g. tri_reflexive … (fpns h g).
46 /2 width=1 by tri_inj/ qed.
47
48 lemma fpn_fpns: ∀h,g,G1,G2,L1,L2,T1,T2. ⦃G1, L1, T1⦄ ⊢ ⋕➡[h, g] ⦃G2, L2, T2⦄ →
49                 ⦃G1, L1, T1⦄ ⊢ ⋕➡*[h, g] ⦃G2, L2, T2⦄.
50 /2 width=1 by tri_inj/ qed.
51
52 lemma fpns_strap1: ∀h,g,G1,G,G2,L1,L,L2,T1,T,T2. ⦃G1, L1, T1⦄ ⊢ ⋕➡*[h, g] ⦃G, L, T⦄ →
53                    ⦃G, L, T⦄ ⊢ ⋕➡[h, g] ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ⊢ ⋕➡*[h, g] ⦃G2, L2, T2⦄.
54 /2 width=5 by tri_step/ qed-.
55
56 lemma fpns_strap2: ∀h,g,G1,G,G2,L1,L,L2,T1,T,T2. ⦃G1, L1, T1⦄ ⊢ ⋕➡[h, g] ⦃G, L, T⦄ →
57                    ⦃G, L, T⦄ ⊢ ⋕➡*[h, g] ⦃G2, L2, T2⦄ → ⦃G1, L1, T1⦄ ⊢ ⋕➡*[h, g] ⦃G2, L2, T2⦄.
58 /2 width=5 by tri_TC_strap/ qed-.