]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/examples/ex_cpr_omega.ma
slight refactoring in the proof of strong normalization
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / examples / ex_cpr_omega.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/reduction/cpr.ma".
16
17 (* EXAMPLES *****************************************************************)
18
19 (* A reduction cycle in two steps: the term Omega ***************************)
20
21 definition Delta: term → term ≝ λW. +ⓛW.ⓐ#0.#0.
22
23 definition Omega1: term → term ≝ λW. ⓐ(Delta W).(Delta W).
24
25 definition Omega2: term → term ≝ λW. +ⓓⓝW.(Delta W).ⓐ#0.#0.
26
27 (* Basic properties *********************************************************)
28
29 lemma Delta_lift: ∀W1,W2,d,e. ⇧[d, e] W1 ≡ W2 →
30                   ⇧[d, e] (Delta W1) ≡ (Delta W2).
31 /4 width=1 by lift_flat, lift_bind, lift_lref_lt/ qed.
32
33 (* Main properties **********************************************************)
34
35 theorem cpr_Omega_12: ∀W. ⦃⋆, ⋆⦄ ⊢ Omega1 W ➡ Omega2 W.
36 /2 width=1 by cpr_beta/ qed.
37
38 theorem cpr_Omega_21: ∀W. ⦃⋆, ⋆⦄ ⊢ Omega2 W ➡ Omega1 W.
39 #W1 elim (lift_total W1 0 1) #W2 #HW12
40 @(cpr_zeta … (Omega1 W2)) /3 width=1 by Delta_lift, lift_flat/
41 @cpr_flat @(cpr_delta … (Delta W1) ? 0)
42 [3,5,8,10: /2 width=2 by Delta_lift/ |4,9: /2 width=1 by cpr_eps/ |*: skip ]
43 qed.