1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground_2/arith.ma".
17 (* ITEMS ********************************************************************)
20 inductive item0: Type[0] ≝
21 | Sort: nat → item0 (* sort: starting at 0 *)
22 | LRef: nat → item0 (* reference by index: starting at 0 *)
23 | GRef: nat → item0 (* reference by position: starting at 0 *)
26 (* binary binding items *)
27 inductive bind2: Type[0] ≝
28 | Abbr: bind2 (* abbreviation *)
29 | Abst: bind2 (* abstraction *)
32 (* binary non-binding items *)
33 inductive flat2: Type[0] ≝
34 | Appl: flat2 (* application *)
35 | Cast: flat2 (* explicit type annotation *)
39 inductive item2: Type[0] ≝
40 | Bind2: bool → bind2 → item2 (* polarized binding item *)
41 | Flat2: flat2 → item2 (* non-binding item *)
44 (* Basic properties *********************************************************)
46 axiom eq_item0_dec: ∀I1,I2:item0. Decidable (I1 = I2).
48 (* Basic_1: was: bind_dec *)
49 axiom eq_bind2_dec: ∀I1,I2:bind2. Decidable (I1 = I2).
51 (* Basic_1: was: flat_dec *)
52 axiom eq_flat2_dec: ∀I1,I2:flat2. Decidable (I1 = I2).
54 (* Basic_1: was: kind_dec *)
55 axiom eq_item2_dec: ∀I1,I2:item2. Decidable (I1 = I2).
57 (* Basic_1: removed theorems 21:
58 s_S s_plus s_plus_sym s_minus minus_s_s s_le s_lt s_inj s_inc
60 r_S r_plus r_plus_sym r_minus r_dis s_r r_arith0 r_arith1
61 not_abbr_abst bind_dec_not