]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/grammar/term_simple.ma
theory of cpy is complete!
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / grammar / term_simple.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/simple_1.ma".
16 include "basic_2/grammar/term.ma".
17
18 (* SIMPLE (NEUTRAL) TERMS ***************************************************)
19
20 inductive simple: predicate term ≝
21    | simple_atom: ∀I. simple (⓪{I})
22    | simple_flat: ∀I,V,T. simple (ⓕ{I} V. T)
23 .
24
25 interpretation "simple (term)" 'Simple T = (simple T).
26
27 (* Basic inversion lemmas ***************************************************)
28
29 fact simple_inv_bind_aux: ∀T. 𝐒⦃T⦄ → ∀a,J,W,U. T = ⓑ{a,J} W. U → ⊥.
30 #T * -T
31 [ #I #a #J #W #U #H destruct
32 | #I #V #T #a #J #W #U #H destruct
33 ]
34 qed.
35
36 lemma simple_inv_bind: ∀a,I,V,T. 𝐒⦃ⓑ{a,I} V. T⦄ → ⊥.
37 /2 width=7/ qed-.
38
39 lemma simple_inv_pair: ∀I,V,T.  𝐒⦃②{I}V.T⦄ → ∃J. I = Flat2 J.
40 * /2 width=2/ #a #I #V #T #H
41 elim (simple_inv_bind … H)
42 qed-.