1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground_2/relocation/rtmap_coafter.ma".
16 include "basic_2/notation/relations/rdropstar_3.ma".
17 include "basic_2/notation/relations/rdropstar_4.ma".
18 include "basic_2/relocation/lreq.ma".
19 include "basic_2/relocation/lifts.ma".
21 (* GENERIC SLICING FOR LOCAL ENVIRONMENTS ***********************************)
23 (* Basic_1: includes: drop_skip_bind drop1_skip_bind *)
24 (* Basic_2A1: includes: drop_atom drop_pair drop_drop drop_skip
25 drop_refl_atom_O2 drop_drop_lt drop_skip_lt
27 inductive drops (b:bool): rtmap → relation lenv ≝
28 | drops_atom: ∀f. (b = Ⓣ → 𝐈⦃f⦄) → drops b (f) (⋆) (⋆)
29 | drops_drop: ∀f,I,L1,L2,V. drops b f L1 L2 → drops b (⫯f) (L1.ⓑ{I}V) L2
30 | drops_skip: ∀f,I,L1,L2,V1,V2.
31 drops b f L1 L2 → ⬆*[f] V2 ≡ V1 →
32 drops b (↑f) (L1.ⓑ{I}V1) (L2.ⓑ{I}V2)
35 interpretation "uniform slicing (local environment)"
36 'RDropStar i L1 L2 = (drops true (uni i) L1 L2).
38 interpretation "generic slicing (local environment)"
39 'RDropStar b f L1 L2 = (drops b f L1 L2).
41 definition d_liftable1: relation2 lenv term → predicate bool ≝
42 λR,b. ∀f,L,K. ⬇*[b, f] L ≡ K →
43 ∀T,U. ⬆*[f] T ≡ U → R K T → R L U.
45 definition d_liftable2: predicate (lenv → relation term) ≝
46 λR. ∀K,T1,T2. R K T1 T2 → ∀b,f,L. ⬇*[b, f] L ≡ K →
48 ∃∃U2. ⬆*[f] T2 ≡ U2 & R L U1 U2.
50 definition d_deliftable2_sn: predicate (lenv → relation term) ≝
51 λR. ∀L,U1,U2. R L U1 U2 → ∀b,f,K. ⬇*[b, f] L ≡ K →
53 ∃∃T2. ⬆*[f] T2 ≡ U2 & R K T1 T2.
55 definition co_dropable_sn: predicate (rtmap → relation lenv) ≝
56 λR. ∀b,f,L1,K1. ⬇*[b, f] L1 ≡ K1 → 𝐔⦃f⦄ →
57 ∀f2,L2. R f2 L1 L2 → ∀f1. f ~⊚ f1 ≡ f2 →
58 ∃∃K2. R f1 K1 K2 & ⬇*[b, f] L2 ≡ K2.
61 definition co_dropable_dx: predicate (rtmap → relation lenv) ≝
62 λR. ∀f2,L1,L2. R f2 L1 L2 →
63 ∀b,f,K2. ⬇*[b, f] L2 ≡ K2 → 𝐔⦃f⦄ →
65 ∃∃K1. ⬇*[b, f] L1 ≡ K1 & R f1 K1 K2.
67 definition co_dedropable_sn: predicate (rtmap → relation lenv) ≝
68 λR. ∀b,f,L1,K1. ⬇*[b, f] L1 ≡ K1 → ∀f1,K2. R f1 K1 K2 →
70 ∃∃L2. R f2 L1 L2 & ⬇*[b, f] L2 ≡ K2 & L1 ≡[f] L2.
72 (* Basic properties *********************************************************)
74 lemma drops_atom_F: ∀f. ⬇*[Ⓕ, f] ⋆ ≡ ⋆.
75 #f @drops_atom #H destruct
78 lemma drops_eq_repl_back: ∀b,L1,L2. eq_repl_back … (λf. ⬇*[b, f] L1 ≡ L2).
79 #b #L1 #L2 #f1 #H elim H -f1 -L1 -L2
80 [ /4 width=3 by drops_atom, isid_eq_repl_back/
81 | #f1 #I #L1 #L2 #V #_ #IH #f2 #H elim (eq_inv_nx … H) -H
82 /3 width=3 by drops_drop/
83 | #f1 #I #L1 #L2 #V1 #v2 #_ #HV #IH #f2 #H elim (eq_inv_px … H) -H
84 /3 width=3 by drops_skip, lifts_eq_repl_back/
88 lemma drops_eq_repl_fwd: ∀b,L1,L2. eq_repl_fwd … (λf. ⬇*[b, f] L1 ≡ L2).
89 #b #L1 #L2 @eq_repl_sym /2 width=3 by drops_eq_repl_back/ (**) (* full auto fails *)
92 (* Basic_2A1: includes: drop_FT *)
93 lemma drops_TF: ∀f,L1,L2. ⬇*[Ⓣ, f] L1 ≡ L2 → ⬇*[Ⓕ, f] L1 ≡ L2.
94 #f #L1 #L2 #H elim H -f -L1 -L2
95 /3 width=1 by drops_atom, drops_drop, drops_skip/
98 (* Basic_2A1: includes: drop_gen *)
99 lemma drops_gen: ∀b,f,L1,L2. ⬇*[Ⓣ, f] L1 ≡ L2 → ⬇*[b, f] L1 ≡ L2.
100 * /2 width=1 by drops_TF/
103 (* Basic_2A1: includes: drop_T *)
104 lemma drops_F: ∀b,f,L1,L2. ⬇*[b, f] L1 ≡ L2 → ⬇*[Ⓕ, f] L1 ≡ L2.
105 * /2 width=1 by drops_TF/
108 (* Basic inversion lemmas ***************************************************)
110 fact drops_inv_atom1_aux: ∀b,f,X,Y. ⬇*[b, f] X ≡ Y → X = ⋆ →
111 Y = ⋆ ∧ (b = Ⓣ → 𝐈⦃f⦄).
112 #b #f #X #Y * -f -X -Y
113 [ /3 width=1 by conj/
114 | #f #I #L1 #L2 #V #_ #H destruct
115 | #f #I #L1 #L2 #V1 #V2 #_ #_ #H destruct
119 (* Basic_1: includes: drop_gen_sort *)
120 (* Basic_2A1: includes: drop_inv_atom1 *)
121 lemma drops_inv_atom1: ∀b,f,Y. ⬇*[b, f] ⋆ ≡ Y → Y = ⋆ ∧ (b = Ⓣ → 𝐈⦃f⦄).
122 /2 width=3 by drops_inv_atom1_aux/ qed-.
124 fact drops_inv_drop1_aux: ∀b,f,X,Y. ⬇*[b, f] X ≡ Y → ∀g,I,K,V. X = K.ⓑ{I}V → f = ⫯g →
126 #b #f #X #Y * -f -X -Y
127 [ #f #Hf #g #J #K #W #H destruct
128 | #f #I #L1 #L2 #V #HL #g #J #K #W #H1 #H2 <(injective_next … H2) -g destruct //
129 | #f #I #L1 #L2 #V1 #V2 #_ #_ #g #J #K #W #_ #H2 elim (discr_push_next … H2)
133 (* Basic_1: includes: drop_gen_drop *)
134 (* Basic_2A1: includes: drop_inv_drop1_lt drop_inv_drop1 *)
135 lemma drops_inv_drop1: ∀b,f,I,K,Y,V. ⬇*[b, ⫯f] K.ⓑ{I}V ≡ Y → ⬇*[b, f] K ≡ Y.
136 /2 width=7 by drops_inv_drop1_aux/ qed-.
138 fact drops_inv_skip1_aux: ∀b,f,X,Y. ⬇*[b, f] X ≡ Y → ∀g,I,K1,V1. X = K1.ⓑ{I}V1 → f = ↑g →
139 ∃∃K2,V2. ⬇*[b, g] K1 ≡ K2 & ⬆*[g] V2 ≡ V1 & Y = K2.ⓑ{I}V2.
140 #b #f #X #Y * -f -X -Y
141 [ #f #Hf #g #J #K1 #W1 #H destruct
142 | #f #I #L1 #L2 #V #_ #g #J #K1 #W1 #_ #H2 elim (discr_next_push … H2)
143 | #f #I #L1 #L2 #V1 #V2 #HL #HV #g #J #K1 #W1 #H1 #H2 <(injective_push … H2) -g destruct
144 /2 width=5 by ex3_2_intro/
148 (* Basic_1: includes: drop_gen_skip_l *)
149 (* Basic_2A1: includes: drop_inv_skip1 *)
150 lemma drops_inv_skip1: ∀b,f,I,K1,V1,Y. ⬇*[b, ↑f] K1.ⓑ{I}V1 ≡ Y →
151 ∃∃K2,V2. ⬇*[b, f] K1 ≡ K2 & ⬆*[f] V2 ≡ V1 & Y = K2.ⓑ{I}V2.
152 /2 width=5 by drops_inv_skip1_aux/ qed-.
154 fact drops_inv_skip2_aux: ∀b,f,X,Y. ⬇*[b, f] X ≡ Y → ∀g,I,K2,V2. Y = K2.ⓑ{I}V2 → f = ↑g →
155 ∃∃K1,V1. ⬇*[b, g] K1 ≡ K2 & ⬆*[g] V2 ≡ V1 & X = K1.ⓑ{I}V1.
156 #b #f #X #Y * -f -X -Y
157 [ #f #Hf #g #J #K2 #W2 #H destruct
158 | #f #I #L1 #L2 #V #_ #g #J #K2 #W2 #_ #H2 elim (discr_next_push … H2)
159 | #f #I #L1 #L2 #V1 #V2 #HL #HV #g #J #K2 #W2 #H1 #H2 <(injective_push … H2) -g destruct
160 /2 width=5 by ex3_2_intro/
164 (* Basic_1: includes: drop_gen_skip_r *)
165 (* Basic_2A1: includes: drop_inv_skip2 *)
166 lemma drops_inv_skip2: ∀b,f,I,X,K2,V2. ⬇*[b, ↑f] X ≡ K2.ⓑ{I}V2 →
167 ∃∃K1,V1. ⬇*[b, f] K1 ≡ K2 & ⬆*[f] V2 ≡ V1 & X = K1.ⓑ{I}V1.
168 /2 width=5 by drops_inv_skip2_aux/ qed-.
170 (* Basic forward lemmas *****************************************************)
172 fact drops_fwd_drop2_aux: ∀b,f2,X,Y. ⬇*[b, f2] X ≡ Y → ∀I,K,V. Y = K.ⓑ{I}V →
173 ∃∃f1,f. 𝐈⦃f1⦄ & f2 ⊚ ⫯f1 ≡ f & ⬇*[b, f] X ≡ K.
174 #b #f2 #X #Y #H elim H -f2 -X -Y
175 [ #f2 #Hf2 #J #K #W #H destruct
176 | #f2 #I #L1 #L2 #V #_ #IHL #J #K #W #H elim (IHL … H) -IHL
177 /3 width=7 by after_next, ex3_2_intro, drops_drop/
178 | #f2 #I #L1 #L2 #V1 #V2 #HL #_ #_ #J #K #W #H destruct
179 lapply (after_isid_dx 𝐈𝐝 … f2) /3 width=9 by after_push, ex3_2_intro, drops_drop/
183 lemma drops_fwd_drop2: ∀b,f2,I,X,K,V. ⬇*[b, f2] X ≡ K.ⓑ{I}V →
184 ∃∃f1,f. 𝐈⦃f1⦄ & f2 ⊚ ⫯f1 ≡ f & ⬇*[b, f] X ≡ K.
185 /2 width=5 by drops_fwd_drop2_aux/ qed-.
187 (* Properties with test for identity ****************************************)
189 (* Basic_2A1: includes: drop_refl *)
190 lemma drops_refl: ∀b,L,f. 𝐈⦃f⦄ → ⬇*[b, f] L ≡ L.
191 #b #L elim L -L /2 width=1 by drops_atom/
192 #L #I #V #IHL #f #Hf elim (isid_inv_gen … Hf) -Hf
193 /3 width=1 by drops_skip, lifts_refl/
196 (* Forward lemmas test for identity *****************************************)
198 (* Basic_1: includes: drop_gen_refl *)
199 (* Basic_2A1: includes: drop_inv_O2 *)
200 lemma drops_fwd_isid: ∀b,f,L1,L2. ⬇*[b, f] L1 ≡ L2 → 𝐈⦃f⦄ → L1 = L2.
201 #b #f #L1 #L2 #H elim H -f -L1 -L2 //
202 [ #f #I #L1 #L2 #V #_ #_ #H elim (isid_inv_next … H) //
203 | /5 width=5 by isid_inv_push, lifts_fwd_isid, eq_f3, sym_eq/
208 lemma drops_after_fwd_drop2: ∀b,f2,I,X,K,V. ⬇*[b, f2] X ≡ K.ⓑ{I}V →
209 ∀f1,f. 𝐈⦃f1⦄ → f2 ⊚ ⫯f1 ≡ f → ⬇*[b, f] X ≡ K.
210 #b #f2 #I #X #K #V #H #f1 #f #Hf1 #Hf elim (drops_fwd_drop2 … H) -H
211 #g1 #g #Hg1 #Hg #HK lapply (after_mono_eq … Hg … Hf ??) -Hg -Hf
212 /3 width=5 by drops_eq_repl_back, isid_inv_eq_repl, eq_next/
215 (* Forward lemmas with test for finite colength *****************************)
217 lemma drops_fwd_isfin: ∀f,L1,L2. ⬇*[Ⓣ, f] L1 ≡ L2 → 𝐅⦃f⦄.
218 #f #L1 #L2 #H elim H -f -L1 -L2
219 /3 width=1 by isfin_next, isfin_push, isfin_isid/
222 (* Properties with test for uniformity **************************************)
224 lemma drops_isuni_ex: ∀f. 𝐔⦃f⦄ → ∀L. ∃K. ⬇*[Ⓕ, f] L ≡ K.
225 #f #H elim H -f /4 width=2 by drops_refl, drops_TF, ex_intro/
226 #f #_ #g #H #IH * /2 width=2 by ex_intro/
228 elim (IH L) -IH /3 width=2 by drops_drop, ex_intro/
231 (* Inversion lemmas with test for uniformity ********************************)
233 lemma drops_inv_isuni: ∀f,L1,L2. ⬇*[Ⓣ, f] L1 ≡ L2 → 𝐔⦃f⦄ →
235 ∃∃g,I,K,V. ⬇*[Ⓣ, g] K ≡ L2 & 𝐔⦃g⦄ & L1 = K.ⓑ{I}V & f = ⫯g.
236 #f #L1 #L2 * -f -L1 -L2
237 [ /4 width=1 by or_introl, conj/
238 | /4 width=8 by isuni_inv_next, ex4_4_intro, or_intror/
239 | /7 width=6 by drops_fwd_isid, lifts_fwd_isid, isuni_inv_push, isid_push, or_introl, conj, eq_f3, sym_eq/
243 (* Basic_2A1: was: drop_inv_O1_pair1 *)
244 lemma drops_inv_pair1_isuni: ∀b,f,I,K,L2,V. 𝐔⦃f⦄ → ⬇*[b, f] K.ⓑ{I}V ≡ L2 →
245 (𝐈⦃f⦄ ∧ L2 = K.ⓑ{I}V) ∨
246 ∃∃g. 𝐔⦃g⦄ & ⬇*[b, g] K ≡ L2 & f = ⫯g.
247 #b #f #I #K #L2 #V #Hf #H elim (isuni_split … Hf) -Hf * #g #Hg #H0 destruct
248 [ lapply (drops_inv_skip1 … H) -H * #Y #X #HY #HX #H destruct
249 <(drops_fwd_isid … HY Hg) -Y >(lifts_fwd_isid … HX Hg) -X
250 /4 width=3 by isid_push, or_introl, conj/
251 | lapply (drops_inv_drop1 … H) -H /3 width=4 by ex3_intro, or_intror/
255 (* Basic_2A1: was: drop_inv_O1_pair2 *)
256 lemma drops_inv_pair2_isuni: ∀b,f,I,K,V,L1. 𝐔⦃f⦄ → ⬇*[b, f] L1 ≡ K.ⓑ{I}V →
257 (𝐈⦃f⦄ ∧ L1 = K.ⓑ{I}V) ∨
258 ∃∃g,I1,K1,V1. 𝐔⦃g⦄ & ⬇*[b, g] K1 ≡ K.ⓑ{I}V & L1 = K1.ⓑ{I1}V1 & f = ⫯g.
260 [ #Hf #H elim (drops_inv_atom1 … H) -H #H destruct
261 | #L1 #I1 #V1 #Hf #H elim (drops_inv_pair1_isuni … Hf H) -Hf -H *
262 [ #Hf #H destruct /3 width=1 by or_introl, conj/
263 | /3 width=8 by ex4_4_intro, or_intror/
268 lemma drops_inv_pair2_isuni_next: ∀b,f,I,K,V,L1. 𝐔⦃f⦄ → ⬇*[b, ⫯f] L1 ≡ K.ⓑ{I}V →
269 ∃∃I1,K1,V1. ⬇*[b, f] K1 ≡ K.ⓑ{I}V & L1 = K1.ⓑ{I1}V1.
270 #b #f #I #K #V #L1 #Hf #H elim (drops_inv_pair2_isuni … H) -H /2 width=3 by isuni_next/ -Hf *
271 [ #H elim (isid_inv_next … H) -H //
272 | /2 width=5 by ex2_3_intro/
276 fact drops_inv_TF_aux: ∀f,L1,L2. ⬇*[Ⓕ, f] L1 ≡ L2 → 𝐔⦃f⦄ →
277 ∀I,K,V. L2 = K.ⓑ{I}V →
278 ⬇*[Ⓣ, f] L1 ≡ K.ⓑ{I}V.
279 #f #L1 #L2 #H elim H -f -L1 -L2
280 [ #f #_ #_ #J #K #W #H destruct
281 | #f #I #L1 #L2 #V #_ #IH #Hf #J #K #W #H destruct
282 /4 width=3 by drops_drop, isuni_inv_next/
283 | #f #I #L1 #L2 #V1 #V2 #HL12 #HV21 #_ #Hf #J #K #W #H destruct
284 lapply (isuni_inv_push … Hf ??) -Hf [1,2: // ] #Hf
285 <(drops_fwd_isid … HL12) -K // <(lifts_fwd_isid … HV21) -V1
286 /3 width=3 by drops_refl, isid_push/
290 (* Basic_2A1: includes: drop_inv_FT *)
291 lemma drops_inv_TF: ∀f,I,L,K,V. ⬇*[Ⓕ, f] L ≡ K.ⓑ{I}V → 𝐔⦃f⦄ →
292 ⬇*[Ⓣ, f] L ≡ K.ⓑ{I}V.
293 /2 width=3 by drops_inv_TF_aux/ qed-.
295 (* Basic_2A1: includes: drop_inv_gen *)
296 lemma drops_inv_gen: ∀b,f,I,L,K,V. ⬇*[b, f] L ≡ K.ⓑ{I}V → 𝐔⦃f⦄ →
297 ⬇*[Ⓣ, f] L ≡ K.ⓑ{I}V.
298 * /2 width=1 by drops_inv_TF/
301 (* Basic_2A1: includes: drop_inv_T *)
302 lemma drops_inv_F: ∀b,f,I,L,K,V. ⬇*[Ⓕ, f] L ≡ K.ⓑ{I}V → 𝐔⦃f⦄ →
303 ⬇*[b, f] L ≡ K.ⓑ{I}V.
304 * /2 width=1 by drops_inv_TF/
307 (* Forward lemmas with test for uniformity **********************************)
309 (* Basic_1: was: drop_S *)
310 (* Basic_2A1: was: drop_fwd_drop2 *)
311 lemma drops_isuni_fwd_drop2: ∀b,f,I,X,K,V. 𝐔⦃f⦄ → ⬇*[b, f] X ≡ K.ⓑ{I}V → ⬇*[b, ⫯f] X ≡ K.
312 /3 width=7 by drops_after_fwd_drop2, after_isid_isuni/ qed-.
314 (* Inversion lemmas with uniform relocations ********************************)
316 lemma drops_inv_atom2: ∀b,L,f. ⬇*[b, f] L ≡ ⋆ →
317 ∃∃n,f1. ⬇*[b, 𝐔❴n❵] L ≡ ⋆ & 𝐔❴n❵ ⊚ f1 ≡ f.
319 [ /3 width=4 by drops_atom, after_isid_sn, ex2_2_intro/
320 | #L #I #V #IH #f #H elim (pn_split f) * #g #H0 destruct
321 [ elim (drops_inv_skip1 … H) -H #K #W #_ #_ #H destruct
322 | lapply (drops_inv_drop1 … H) -H #HL
323 elim (IH … HL) -IH -HL /3 width=8 by drops_drop, after_next, ex2_2_intro/
328 lemma drops_inv_succ: ∀l,L1,L2. ⬇*[⫯l] L1 ≡ L2 →
329 ∃∃I,K,V. ⬇*[l] K ≡ L2 & L1 = K.ⓑ{I}V.
330 #l #L1 #L2 #H elim (drops_inv_isuni … H) -H // *
331 [ #H elim (isid_inv_next … H) -H //
332 | /2 width=5 by ex2_3_intro/
336 (* Properties with uniform relocations **************************************)
338 lemma drops_F_uni: ∀L,i. ⬇*[Ⓕ, 𝐔❴i❵] L ≡ ⋆ ∨ ∃∃I,K,V. ⬇*[i] L ≡ K.ⓑ{I}V.
339 #L elim L -L /2 width=1 by or_introl/
340 #L #I #V #IH * /4 width=4 by drops_refl, ex1_3_intro, or_intror/
341 #i elim (IH i) -IH /3 width=1 by drops_drop, or_introl/
342 * /4 width=4 by drops_drop, ex1_3_intro, or_intror/
345 (* Basic_2A1: includes: drop_split *)
346 lemma drops_split_trans: ∀b,f,L1,L2. ⬇*[b, f] L1 ≡ L2 → ∀f1,f2. f1 ⊚ f2 ≡ f → 𝐔⦃f1⦄ →
347 ∃∃L. ⬇*[b, f1] L1 ≡ L & ⬇*[b, f2] L ≡ L2.
348 #b #f #L1 #L2 #H elim H -f -L1 -L2
349 [ #f #H0f #f1 #f2 #Hf #Hf1 @(ex2_intro … (⋆)) @drops_atom
351 #H elim (after_inv_isid3 … Hf H) -f //
352 | #f #I #L1 #L2 #V #HL12 #IHL12 #f1 #f2 #Hf #Hf1 elim (after_inv_xxn … Hf) -Hf [1,3: * |*: // ]
353 [ #g1 #g2 #Hf #H1 #H2 destruct
354 lapply (isuni_inv_push … Hf1 ??) -Hf1 [1,2: // ] #Hg1
356 /4 width=5 by drops_drop, drops_skip, lifts_refl, isuni_isid, ex2_intro/
357 | #g1 #Hf #H destruct elim (IHL12 … Hf) -f
358 /3 width=5 by ex2_intro, drops_drop, isuni_inv_next/
360 | #f #I #L1 #L2 #V1 #V2 #_ #HV21 #IHL12 #f1 #f2 #Hf #Hf1 elim (after_inv_xxp … Hf) -Hf [2,3: // ]
361 #g1 #g2 #Hf #H1 #H2 destruct elim (lifts_split_trans … HV21 … Hf) -HV21
362 elim (IHL12 … Hf) -f /3 width=5 by ex2_intro, drops_skip, isuni_fwd_push/
366 lemma drops_split_div: ∀b,f1,L1,L. ⬇*[b, f1] L1 ≡ L → ∀f2,f. f1 ⊚ f2 ≡ f → 𝐔⦃f2⦄ →
367 ∃∃L2. ⬇*[Ⓕ, f2] L ≡ L2 & ⬇*[Ⓕ, f] L1 ≡ L2.
368 #b #f1 #L1 #L #H elim H -f1 -L1 -L
369 [ #f1 #Hf1 #f2 #f #Hf #Hf2 @(ex2_intro … (⋆)) @drops_atom #H destruct
370 | #f1 #I #L1 #L #V #HL1 #IH #f2 #f #Hf #Hf2 elim (after_inv_nxx … Hf) -Hf [2,3: // ]
371 #g #Hg #H destruct elim (IH … Hg) -IH -Hg /3 width=5 by drops_drop, ex2_intro/
372 | #f1 #I #L1 #L #V1 #V #HL1 #HV1 #IH #f2 #f #Hf #Hf2
373 elim (after_inv_pxx … Hf) -Hf [1,3: * |*: // ]
374 #g2 #g #Hg #H2 #H0 destruct
375 [ lapply (isuni_inv_push … Hf2 ??) -Hf2 [1,2: // ] #Hg2 -IH
376 lapply (after_isid_inv_dx … Hg … Hg2) -Hg #Hg
377 /5 width=7 by drops_eq_repl_back, drops_F, drops_refl, drops_skip, lifts_eq_repl_back, isid_push, ex2_intro/
378 | lapply (isuni_inv_next … Hf2 ??) -Hf2 [1,2: // ] #Hg2 -HL1 -HV1
379 elim (IH … Hg) -f1 /3 width=3 by drops_drop, ex2_intro/
384 (* Properties with application **********************************************)
386 lemma drops_tls_at: ∀f,i1,i2. @⦃i1,f⦄ ≡ i2 →
387 ∀b,L1,L2. ⬇*[b,⫱*[i2]f] L1 ≡ L2 →
388 ⬇*[b,↑⫱*[⫯i2]f] L1 ≡ L2.
389 /3 width=3 by drops_eq_repl_fwd, at_inv_tls/ qed-.
391 lemma drops_split_trans_pair2: ∀b,f,I,L,K0,V. ⬇*[b, f] L ≡ K0.ⓑ{I}V → ∀n. @⦃O, f⦄ ≡ n →
392 ∃∃K,W. ⬇*[n]L ≡ K.ⓑ{I}W & ⬇*[b, ⫱*[⫯n]f] K ≡ K0 & ⬆*[⫱*[⫯n]f] V ≡ W.
393 #b #f #I #L #K0 #V #H #n #Hf
394 elim (drops_split_trans … H) -H [ |5: @(after_uni_dx … Hf) |2,3: skip ] /2 width=1 by after_isid_dx/ #Y #HLY #H
395 lapply (drops_tls_at … Hf … H) -H #H
396 elim (drops_inv_skip2 … H) -H #K #W #HK0 #HVW #H destruct
397 /3 width=5 by drops_inv_gen, ex3_2_intro/
400 (* Basic_2A1: removed theorems 12:
401 drops_inv_nil drops_inv_cons d1_liftable_liftables
402 drop_refl_atom_O2 drop_inv_pair1
403 drop_inv_Y1 drop_Y1 drop_O_Y drop_fwd_Y2
404 drop_fwd_length_minus2 drop_fwd_length_minus4
406 (* Basic_1: removed theorems 53:
407 drop1_gen_pnil drop1_gen_pcons drop1_getl_trans
408 drop_ctail drop_skip_flat
409 cimp_flat_sx cimp_flat_dx cimp_bind cimp_getl_conf
410 drop_clear drop_clear_O drop_clear_S
411 clear_gen_sort clear_gen_bind clear_gen_flat clear_gen_flat_r
412 clear_gen_all clear_clear clear_mono clear_trans clear_ctail clear_cle
413 getl_ctail_clen getl_gen_tail clear_getl_trans getl_clear_trans
414 getl_clear_bind getl_clear_conf getl_dec getl_drop getl_drop_conf_lt
415 getl_drop_conf_ge getl_conf_ge_drop getl_drop_conf_rev
416 drop_getl_trans_lt drop_getl_trans_le drop_getl_trans_ge
417 getl_drop_trans getl_flt getl_gen_all getl_gen_sort getl_gen_O
418 getl_gen_S getl_gen_2 getl_gen_flat getl_gen_bind getl_conf_le
419 getl_trans getl_refl getl_head getl_flat getl_ctail getl_mono