]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/relocation/drops_lreq.ma
basic_2: stronger supclosure allows better inversion lemmas
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / relocation / drops_lreq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/relocation/drops_ceq.ma".
16 include "basic_2/relocation/drops_lexs.ma".
17
18 (* GENERIC SLICING FOR LOCAL ENVIRONMENTS ***********************************)
19
20 (* Properties with ranged equivalence for local environments ****************)
21
22 lemma lreq_co_dedropable: co_dedropable_sn lreq.
23 @lexs_liftable_co_dedropable
24 /2 width=6 by cfull_lift, ceq_lift, cfull_refl, ceq_refl/
25 qed-.
26
27 lemma lreq_co_dropable_sn: co_dropable_sn lreq.
28 @lexs_co_dropable_sn qed-.
29
30 lemma lreq_co_dropable_dx: co_dropable_dx lreq.
31 @lexs_co_dropable_dx qed-.
32
33 (* Basic_2A1: includes: lreq_drop_trans_be *)
34 lemma lreq_drops_trans_next: ∀f2,L1,L2. L1 ≡[f2] L2 →
35                              ∀b,f,I,K2,V. ⬇*[b,f] L2 ≡ K2.ⓑ{I}V → 𝐔⦃f⦄ →
36                              ∀f1. f ~⊚ ⫯f1 ≡ f2 →
37                              ∃∃K1. ⬇*[b,f] L1 ≡ K1.ⓑ{I}V & K1 ≡[f1] K2.
38 #f2 #L1 #L2 #HL12 #b #f #I #K1 #V #HLK1 #Hf #f1 #Hf2
39 elim (lexs_drops_trans_next … HL12 … HLK1 Hf … Hf2) -f2 -L2 -Hf
40 /2 width=3 by ex2_intro/
41 qed-.
42
43 (* Basic_2A1: includes: lreq_drop_conf_be *)
44 lemma lreq_drops_conf_next: ∀f2,L1,L2. L1 ≡[f2] L2 →
45                             ∀b,f,I,K1,V. ⬇*[b,f] L1 ≡ K1.ⓑ{I}V → 𝐔⦃f⦄ →
46                             ∀f1. f ~⊚ ⫯f1 ≡ f2 →
47                             ∃∃K2. ⬇*[b,f] L2 ≡ K2.ⓑ{I}V & K1 ≡[f1] K2.
48 #f2 #L1 #L2 #HL12 #b #f #I #K1 #V #HLK1 #Hf #f1 #Hf2
49 elim (lreq_drops_trans_next … (lreq_sym … HL12) … HLK1 … Hf2) // -f2 -L1 -Hf
50 /3 width=3 by lreq_sym, ex2_intro/
51 qed-.
52
53 lemma drops_lreq_trans_next: ∀f1,K1,K2. K1 ≡[f1] K2 →
54                              ∀b,f,I,L1,V. ⬇*[b,f] L1.ⓑ{I}V ≡ K1 →
55                              ∀f2. f ~⊚ f1 ≡ ⫯f2 →
56                              ∃∃L2. ⬇*[b,f] L2.ⓑ{I}V ≡ K2 & L1 ≡[f2] L2 & L1.ⓑ{I}V ≡[f] L2.ⓑ{I}V.
57 #f1 #K1 #K2 #HK12 #b #f #I #L1 #V #HLK1 #f2 #Hf2
58 elim (drops_lexs_trans_next … HK12 … HLK1 … Hf2) -f1 -K1
59 /2 width=6 by cfull_lift, ceq_lift, cfull_refl, ceq_refl, ex3_intro/
60 qed-.