]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/relocation/lifts_lifts.ma
basic_2: stronger supclosure allows better inversion lemmas
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / relocation / lifts_lifts.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/relocation/lifts.ma".
16
17 (* GENERIC RELOCATION FOR TERMS *********************************************)
18
19 (* Main properties **********************************************************)
20
21 (* Basic_1: includes: lift_gen_lift *)
22 (* Basic_2A1: includes: lift_div_le lift_div_be *)
23 theorem lift_div4: ∀f2,Tf,T. ⬆*[f2] Tf ≡ T → ∀g2,Tg. ⬆*[g2] Tg ≡ T →
24                    ∀f1,g1. H_at_div f2 g2 f1 g1 →
25                    ∃∃T0. ⬆*[f1] T0 ≡ Tf & ⬆*[g1] T0 ≡ Tg.
26 #f2 #Tf #T #H elim H -f2 -Tf -T
27 [ #f2 #s #g2 #Tg #H #f1 #g1 #_
28   lapply (lifts_inv_sort2 … H) -H #H destruct
29   /2 width=3 by ex2_intro/
30 | #f2 #jf #j #Hf2 #g2 #Tg #H #f1 #g1 #H0
31   elim (lifts_inv_lref2 … H) -H #jg #Hg2 #H destruct
32   elim (H0 … Hf2 Hg2) -H0 -j /3 width=3 by lifts_lref, ex2_intro/
33 | #f2 #l #g2 #Tg #H #f1 #g1 #_
34   lapply (lifts_inv_gref2 … H) -H #H destruct
35   /2 width=3 by ex2_intro/
36 | #f2 #p #I #Vf #V #Tf #T #_ #_ #IHV #IHT #g2 #X #H #f1 #g1 #H0
37   elim (lifts_inv_bind2 … H) -H #Vg #Tg #HVg #HTg #H destruct
38   elim (IHV … HVg … H0) -IHV -HVg
39   elim (IHT … HTg) -IHT -HTg [ |*: /2 width=8 by at_div_pp/ ]
40   /3 width=5 by lifts_bind, ex2_intro/
41 | #f2 #I #Vf #V #Tf #T #_ #_ #IHV #IHT #g2 #X #H #f1 #g1 #H0
42   elim (lifts_inv_flat2 … H) -H #Vg #Tg #HVg #HTg #H destruct
43   elim (IHV … HVg … H0) -IHV -HVg
44   elim (IHT … HTg … H0) -IHT -HTg -H0
45   /3 width=5 by lifts_flat, ex2_intro/
46 ]
47 qed-.
48
49 lemma lifts_div4_one: ∀f,Tf,T. ⬆*[↑f] Tf ≡ T →
50                       ∀T1. ⬆*[1] T1 ≡ T →
51                       ∃∃T0. ⬆*[1] T0 ≡ Tf & ⬆*[f] T0 ≡ T1.
52 /4 width=6 by lift_div4, at_div_id_dx, at_div_pn/ qed-.
53
54 theorem lifts_div3: ∀f2,T,T2. ⬆*[f2] T2 ≡ T → ∀f,T1. ⬆*[f] T1 ≡ T →
55                     ∀f1. f2 ⊚ f1 ≡ f → ⬆*[f1] T1 ≡ T2.
56 #f2 #T #T2 #H elim H -f2 -T -T2
57 [ #f2 #s #f #T1 #H >(lifts_inv_sort2 … H) -T1 //
58 | #f2 #i2 #i #Hi2 #f #T1 #H #f1 #Ht21 elim (lifts_inv_lref2 … H) -H
59   #i1 #Hi1 #H destruct /3 width=6 by lifts_lref, after_fwd_at1/
60 | #f2 #l #f #T1 #H >(lifts_inv_gref2 … H) -T1 //
61 | #f2 #p #I #W2 #W #U2 #U #_ #_ #IHW #IHU #f #T1 #H
62   elim (lifts_inv_bind2 … H) -H #W1 #U1 #HW1 #HU1 #H destruct
63   /4 width=3 by lifts_bind, after_O2/
64 | #f2 #I #W2 #W #U2 #U #_ #_ #IHW #IHU #f #T1 #H
65   elim (lifts_inv_flat2 … H) -H #W1 #U1 #HW1 #HU1 #H destruct
66   /3 width=3 by lifts_flat/
67 ]
68 qed-.
69
70 (* Basic_1: was: lift1_lift1 (left to right) *)
71 (* Basic_1: includes: lift_free (left to right) lift_d lift1_xhg (right to left) lift1_free (right to left) *)
72 (* Basic_2A1: includes: lift_trans_be lift_trans_le lift_trans_ge lifts_lift_trans_le lifts_lift_trans *)
73 theorem lifts_trans: ∀f1,T1,T. ⬆*[f1] T1 ≡ T → ∀f2,T2. ⬆*[f2] T ≡ T2 →
74                      ∀f. f2 ⊚ f1 ≡ f → ⬆*[f] T1 ≡ T2.
75 #f1 #T1 #T #H elim H -f1 -T1 -T
76 [ #f1 #s #f2 #T2 #H >(lifts_inv_sort1 … H) -T2 //
77 | #f1 #i1 #i #Hi1 #f2 #T2 #H #f #Ht21 elim (lifts_inv_lref1 … H) -H
78   #i2 #Hi2 #H destruct /3 width=6 by lifts_lref, after_fwd_at/
79 | #f1 #l #f2 #T2 #H >(lifts_inv_gref1 … H) -T2 //
80 | #f1 #p #I #W1 #W #U1 #U #_ #_ #IHW #IHU #f2 #T2 #H
81   elim (lifts_inv_bind1 … H) -H #W2 #U2 #HW2 #HU2 #H destruct
82   /4 width=3 by lifts_bind, after_O2/
83 | #f1 #I #W1 #W #U1 #U #_ #_ #IHW #IHU #f2 #T2 #H
84   elim (lifts_inv_flat1 … H) -H #W2 #U2 #HW2 #HU2 #H destruct
85   /3 width=3 by lifts_flat/
86 ]
87 qed-.
88
89 (* Basic_2A1: includes: lift_conf_O1 lift_conf_be *)
90 theorem lifts_conf: ∀f1,T,T1. ⬆*[f1] T ≡ T1 → ∀f,T2. ⬆*[f] T ≡ T2 →
91                     ∀f2. f2 ⊚ f1 ≡ f → ⬆*[f2] T1 ≡ T2.
92 #f1 #T #T1 #H elim H -f1 -T -T1
93 [ #f1 #s #f #T2 #H >(lifts_inv_sort1 … H) -T2 //
94 | #f1 #i #i1 #Hi1 #f #T2 #H #f2 #Ht21 elim (lifts_inv_lref1 … H) -H
95   #i2 #Hi2 #H destruct /3 width=6 by lifts_lref, after_fwd_at2/
96 | #f1 #l #f #T2 #H >(lifts_inv_gref1 … H) -T2 //
97 | #f1 #p #I #W #W1 #U #U1 #_ #_ #IHW #IHU #f #T2 #H
98   elim (lifts_inv_bind1 … H) -H #W2 #U2 #HW2 #HU2 #H destruct
99   /4 width=3 by lifts_bind, after_O2/
100 | #f1 #I #W #W1 #U #U1 #_ #_ #IHW #IHU #f #T2 #H
101   elim (lifts_inv_flat1 … H) -H #W2 #U2 #HW2 #HU2 #H destruct
102   /3 width=3 by lifts_flat/
103 ]
104 qed-.
105
106 (* Advanced proprerties *****************************************************)
107
108 (* Basic_2A1: includes: lift_inj *)
109 lemma lifts_inj: ∀f,T1,U. ⬆*[f] T1 ≡ U → ∀T2. ⬆*[f] T2 ≡ U → T1 = T2.
110 #f #T1 #U #H1 #T2 #H2 lapply (after_isid_dx 𝐈𝐝  … f)
111 /3 width=6 by lifts_div3, lifts_fwd_isid/
112 qed-.
113
114 (* Basic_2A1: includes: lift_mono *)
115 lemma lifts_mono: ∀f,T,U1. ⬆*[f] T ≡ U1 → ∀U2. ⬆*[f] T ≡ U2 → U1 = U2.
116 #f #T #U1 #H1 #U2 #H2 lapply (after_isid_sn 𝐈𝐝  … f)
117 /3 width=6 by lifts_conf, lifts_fwd_isid/
118 qed-.