]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/relocation/lleq.ma
- improved arithmetics for natural numbers with infinity
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / relocation / lleq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/lazyeq_4.ma".
16 include "basic_2/relocation/ldrop.ma".
17
18 (* LAZY EQUIVALENCE FOR LOCAL ENVIRONMENTS **********************************)
19
20 inductive lleq: nat → term → relation lenv ≝
21 | lleq_sort: ∀L1,L2,d,k. |L1| = |L2| → lleq d (⋆k) L1 L2
22 | lleq_skip: ∀I1,I2,L1,L2,K1,K2,V1,V2,d,i. i < d →
23              ⇩[0, i] L1 ≡ K1.ⓑ{I1}V1 → ⇩[0, i] L2 ≡ K2.ⓑ{I2}V2 →
24              lleq (d-i-1) V1 K1 K2 → lleq (d-i-1) V2 K1 K2 → lleq d (#i) L1 L2
25 | lleq_lref: ∀I,L1,L2,K1,K2,V,d,i. d ≤ i →
26              ⇩[0, i] L1 ≡ K1.ⓑ{I}V → ⇩[0, i] L2 ≡ K2.ⓑ{I}V →
27              lleq 0 V K1 K2 → lleq d (#i) L1 L2
28 | lleq_free: ∀L1,L2,d,i. |L1| ≤ i → |L2| ≤ i → |L1| = |L2| → lleq d (#i) L1 L2
29 | lleq_gref: ∀L1,L2,d,p. |L1| = |L2| → lleq d (§p) L1 L2
30 | lleq_bind: ∀a,I,L1,L2,V,T,d.
31              lleq d V L1 L2 → lleq (d+1) T (L1.ⓑ{I}V) (L2.ⓑ{I}V) →
32              lleq d (ⓑ{a,I}V.T) L1 L2
33 | lleq_flat: ∀I,L1,L2,V,T,d.
34              lleq d V L1 L2 → lleq d T L1 L2 → lleq d (ⓕ{I}V.T) L1 L2
35 .
36
37 interpretation
38    "lazy equivalence (local environment)"
39    'LazyEq d T L1 L2 = (lleq d T L1 L2).
40
41 (* Basic_properties *********************************************************)
42
43 lemma lleq_sym: ∀d,T. symmetric … (lleq d T).
44 #d #T #L1 #L2 #H elim H -d -T -L1 -L2
45 /2 width=10 by lleq_sort, lleq_skip, lleq_lref, lleq_free, lleq_gref, lleq_bind, lleq_flat/
46 qed-.
47
48 (* Note this is: "∀d,T. reflexive … (lleq d T)" *)
49 axiom lleq_refl: ∀T,L,d. L ⋕[d, T] L.
50 (*
51 #T #L @(f2_ind … rfw … L T) -L -T
52 #n #IH #L * * /3 width=1 by lleq_sort, lleq_gref, lleq_bind, lleq_flat/
53 #i #H elim (lt_or_ge i (|L|)) /2 width=1 by lleq_free/
54 #HiL #d elim (lt_or_ge i d) /2 width=1 by lleq_skip/
55 elim (ldrop_O1_lt … HiL) -HiL destruct /4 width=7 by lleq_lref, ldrop_fwd_rfw/
56 qed.
57 *)
58
59 lemma lleq_ge: ∀L1,L2,T,d1. L1 ⋕[d1, T] L2 → ∀d2. d1 ≤ d2 → L1 ⋕[d2, T] L2.
60 #L1 #L2 #T #d1 #H elim H -L1 -L2 -T -d1
61 /4 width=1 by lleq_sort, lleq_free, lleq_gref, lleq_bind, lleq_flat, le_S_S/
62 [ /5 width=10 by lleq_skip, lt_to_le_to_lt, monotonic_le_minus_l, monotonic_pred/ (**) (* a bit slow *)
63 | #I #L1 #L2 #K1 #K2 #V #d1 #i #Hi #HLK1 #HLK2 #HV #IHV #d2 #Hd12 elim (lt_or_ge i d2)
64   [ -d1 /3 width=10 by lleq_skip/
65   | /3 width=7 by lleq_lref, transitive_le/
66   ]
67 ]
68 qed-.
69
70 (* Basic inversion lemmas ***************************************************)
71
72 fact lleq_inv_lref_aux: ∀d,X,L1,L2. L1 ⋕[d, X] L2 → ∀i. X = #i →
73                         ∨∨ |L1| ≤ i ∧ |L2| ≤ i
74                          | ∃∃I1,I2,K1,K2,V1,V2. ⇩[0, i] L1 ≡ K1.ⓑ{I1}V1 &
75                                                 ⇩[0, i] L2 ≡ K2.ⓑ{I2}V2 &
76                                                 K1 ⋕[d-i-1, V1] K2 &
77                                                 K1 ⋕[d-i-1, V2] K2 &
78                                                 i < d
79                          | ∃∃I,K1,K2,V. ⇩[0, i] L1 ≡ K1.ⓑ{I}V &
80                                         ⇩[0, i] L2 ≡ K2.ⓑ{I}V &
81                                         K1 ⋕[0, V] K2 & d ≤ i.
82 #d #X #L1 #L2 * -d -X -L1 -L2
83 [ #L1 #L2 #d #k #_ #j #H destruct
84 | #I1 #I2 #L1 #L2 #K1 #K2 #V1 #V2 #d #i #Hid #HLK1 #HLK2 #HV1 #HV2 #j #H destruct /3 width=10 by or3_intro1, ex5_6_intro/
85 | #I #L1 #L2 #K1 #K2 #V #d #i #Hdi #HLK1 #HLK2 #HK12 #j #H destruct /3 width=7 by or3_intro2, ex4_4_intro/
86 | #L1 #L2 #d #i #HL1 #HL2 #_ #j #H destruct /3 width=1 by or3_intro0, conj/
87 | #L1 #L2 #d #p #_ #j #H destruct
88 | #a #I #L1 #L2 #V #T #d #_ #_ #j #H destruct
89 | #I #L1 #L2 #V #T #d #_ #_ #j #H destruct
90 ]
91 qed-.
92
93 lemma lleq_inv_lref: ∀L1,L2,d,i. L1 ⋕[d, #i] L2 →
94                      ∨∨ |L1| ≤ i ∧ |L2| ≤ i
95                       | ∃∃I1,I2,K1,K2,V1,V2. ⇩[0, i] L1 ≡ K1.ⓑ{I1}V1 &
96                                              ⇩[0, i] L2 ≡ K2.ⓑ{I2}V2 &
97                                              K1 ⋕[d-i-1, V1] K2 &
98                                              K1 ⋕[d-i-1, V2] K2 &
99                                              i < d
100                       | ∃∃I,K1,K2,V. ⇩[0, i] L1 ≡ K1.ⓑ{I}V &
101                                      ⇩[0, i] L2 ≡ K2.ⓑ{I}V &
102                                      K1 ⋕[0, V] K2 & d ≤ i.
103 /2 width=3 by lleq_inv_lref_aux/ qed-.
104
105 fact lleq_inv_bind_aux: ∀d,X,L1,L2. L1 ⋕[d,X] L2 → ∀a,I,V,T. X = ⓑ{a,I}V.T →
106                         L1 ⋕[d, V] L2 ∧ L1.ⓑ{I}V ⋕[d+1, T] L2.ⓑ{I}V.
107 #d #X #L1 #L2 * -d -X -L1 -L2
108 [ #L1 #L2 #d #k #_ #b #J #W #U #H destruct
109 | #I1 #I2 #L1 #L2 #K1 #K2 #V1 #V2 #d #i #_ #_ #_ #_ #_ #b #J #W #U #H destruct
110 | #I #L1 #L2 #K1 #K2 #V #d #i #_ #_ #_ #_ #b #J #W #U #H destruct
111 | #L1 #L2 #d #i #_ #_ #_ #b #J #W #U #H destruct
112 | #L1 #L2 #d #p #_ #b #J #W #U #H destruct
113 | #a #I #L1 #L2 #V #T #d #HV #HT #b #J #W #U #H destruct /2 width=1 by conj/
114 | #I #L1 #L2 #V #T #d #_ #_ #b #J #W #U #H destruct
115 ]
116 qed-.
117
118 lemma lleq_inv_bind: ∀a,I,L1,L2,V,T,d. L1 ⋕[d, ⓑ{a,I}V.T] L2 →
119                      L1 ⋕[d, V] L2 ∧ L1.ⓑ{I}V ⋕[d+1, T] L2.ⓑ{I}V.
120 /2 width=4 by lleq_inv_bind_aux/ qed-.
121
122 fact lleq_inv_flat_aux: ∀d,X,L1,L2. L1 ⋕[d, X] L2 → ∀I,V,T. X = ⓕ{I}V.T →
123                         L1 ⋕[d, V] L2 ∧ L1 ⋕[d, T] L2.
124 #d #X #L1 #L2 * -d -X -L1 -L2
125 [ #L1 #L2 #d #k #_ #J #W #U #H destruct
126 | #I1 #I2 #L1 #L2 #K1 #K2 #V1 #V2 #d #i #_ #_ #_ #_ #_ #J #W #U #H destruct
127 | #I #L1 #L2 #K1 #K2 #V #d #i #_ #_ #_ #_ #J #W #U #H destruct
128 | #L1 #L2 #d #i #_ #_ #_ #J #W #U #H destruct
129 | #L1 #L2 #d #p #_ #J #W #U #H destruct
130 | #a #I #L1 #L2 #V #T #d #_ #_ #J #W #U #H destruct
131 | #I #L1 #L2 #V #T #d #HV #HT #J #W #U #H destruct /2 width=1 by conj/
132 ]
133 qed-.
134
135 lemma lleq_inv_flat: ∀I,L1,L2,V,T,d. L1 ⋕[d, ⓕ{I}V.T] L2 →
136                      L1 ⋕[d, V] L2 ∧ L1 ⋕[d, T] L2.
137 /2 width=4 by lleq_inv_flat_aux/ qed-.
138
139 (* Basic forward lemmas *****************************************************)
140
141 lemma lleq_fwd_length: ∀L1,L2,T,d. L1 ⋕[d, T] L2 → |L1| = |L2|.
142 #L1 #L2 #T #d #H elim H -L1 -L2 -T -d //
143 [ #I1 #I2 #L1 #L2 #K1 #K2 #V1 #V2 #d #i #_ #HLK1 #HLK2 #_ #_ #HK12 #_
144 | #I #L1 #L2 #K1 #K2 #V #d #i #_ #HLK1 #HLK2 #_ #IHK12
145 ]
146 lapply (ldrop_fwd_length … HLK1) -HLK1
147 lapply (ldrop_fwd_length … HLK2) -HLK2
148 normalize //
149 qed-.
150
151 lemma lleq_fwd_ldrop_sn: ∀L1,L2,T,d. L1 ⋕[d, T] L2 → ∀K1,i. ⇩[0, i] L1 ≡ K1 →
152                          ∃K2. ⇩[0, i] L2 ≡ K2.
153 #L1 #L2 #T #d #H #K1 #i #HLK1 lapply (lleq_fwd_length … H) -H
154 #HL12 lapply (ldrop_fwd_length_le2 … HLK1) -HLK1 /2 width=1 by ldrop_O1_le/
155 qed-.
156
157 lemma lleq_fwd_ldrop_dx: ∀L1,L2,T,d. L1 ⋕[d, T] L2 → ∀K2,i. ⇩[0, i] L2 ≡ K2 →
158                          ∃K1. ⇩[0, i] L1 ≡ K1.
159 /3 width=6 by lleq_fwd_ldrop_sn, lleq_sym/ qed-.