]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/relocation/lleq.ma
we define the lazy poinwise extension of a relation, that should
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / relocation / lleq.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/lazyeq_4.ma".
16 include "basic_2/relocation/llpx_sn.ma".
17
18 (* LAZY EQUIVALENCE FOR LOCAL ENVIRONMENTS **********************************)
19
20 definition ceq: relation3 lenv term term ≝ λL,T1,T2. T1 = T2.
21
22 definition lleq: relation4 ynat term lenv lenv ≝ llpx_sn ceq.
23
24 interpretation
25    "lazy equivalence (local environment)"
26    'LazyEq T d L1 L2 = (lleq d T L1 L2).
27
28 (* Basic inversion lemmas ***************************************************)
29
30 lemma lleq_ind: ∀R:relation4 ynat term lenv lenv. (
31                    ∀L1,L2,d,k. |L1| = |L2| → R d (⋆k) L1 L2
32                 ) → (
33                    ∀L1,L2,d,i. |L1| = |L2| → yinj i < d → R d (#i) L1 L2
34                 ) → (
35                    ∀I,L1,L2,K1,K2,V,d,i. d ≤ yinj i →
36                    ⇩[i] L1 ≡ K1.ⓑ{I}V → ⇩[i] L2 ≡ K2.ⓑ{I}V →
37                    K1 ⋕[V, yinj O] K2 → R (yinj O) V K1 K2 → R d (#i) L1 L2
38                 ) → (
39                    ∀L1,L2,d,i. |L1| = |L2| → |L1| ≤ i → |L2| ≤ i → R d (#i) L1 L2
40                 ) → (
41                    ∀L1,L2,d,p. |L1| = |L2| → R d (§p) L1 L2
42                 ) → (
43                    ∀a,I,L1,L2,V,T,d.
44                    L1 ⋕[V, d]L2 → L1.ⓑ{I}V ⋕[T, ⫯d] L2.ⓑ{I}V →
45                    R d V L1 L2 → R (⫯d) T (L1.ⓑ{I}V) (L2.ⓑ{I}V) → R d (ⓑ{a,I}V.T) L1 L2
46                 ) → (
47                    ∀I,L1,L2,V,T,d.
48                    L1 ⋕[V, d]L2 → L1 ⋕[T, d] L2 →
49                    R d V L1 L2 → R d T L1 L2 → R d (ⓕ{I}V.T) L1 L2
50                 ) →
51                 ∀d,T,L1,L2. L1 ⋕[T, d] L2 → R d T L1 L2.
52 #R #H1 #H2 #H3 #H4 #H5 #H6 #H7 #d #T #L1 #L2 #H elim H -L1 -L2 -T -d /2 width=8 by/
53 qed-.
54
55 lemma lleq_inv_bind: ∀a,I,L1,L2,V,T,d. L1 ⋕[ⓑ{a,I}V.T, d] L2 →
56                      L1 ⋕[V, d] L2 ∧ L1.ⓑ{I}V ⋕[T, ⫯d] L2.ⓑ{I}V.
57 /2 width=2 by llpx_sn_inv_bind/ qed-.
58
59 lemma lleq_inv_flat: ∀I,L1,L2,V,T,d. L1 ⋕[ⓕ{I}V.T, d] L2 →
60                      L1 ⋕[V, d] L2 ∧ L1 ⋕[T, d] L2.
61 /2 width=2 by llpx_sn_inv_flat/ qed-.
62
63 (* Basic forward lemmas *****************************************************)
64
65 lemma lleq_fwd_length: ∀L1,L2,T,d. L1 ⋕[T, d] L2 → |L1| = |L2|.
66 /2 width=4 by llpx_sn_fwd_length/ qed-.
67
68 lemma lleq_fwd_lref: ∀L1,L2,d,i. L1 ⋕[#i, d] L2 →
69                      ∨∨ |L1| ≤ i ∧ |L2| ≤ i
70                       | yinj i < d
71                       | ∃∃I,K1,K2,V. ⇩[i] L1 ≡ K1.ⓑ{I}V &
72                                      ⇩[i] L2 ≡ K2.ⓑ{I}V &
73                                       K1 ⋕[V, yinj 0] K2 & d ≤ yinj i.
74 #L1 #L2 #d #i #H elim (llpx_sn_fwd_lref … H) /2 width=1/
75 * /3 width=7 by or3_intro2, ex4_4_intro/
76 qed-.
77
78 lemma lleq_fwd_ldrop_sn: ∀L1,L2,T,d. L1 ⋕[d, T] L2 → ∀K1,i. ⇩[i] L1 ≡ K1 →
79                          ∃K2. ⇩[i] L2 ≡ K2.
80 /2 width=7 by llpx_sn_fwd_ldrop_sn/ qed-.
81
82 lemma lleq_fwd_ldrop_dx: ∀L1,L2,T,d. L1 ⋕[d, T] L2 → ∀K2,i. ⇩[i] L2 ≡ K2 →
83                          ∃K1. ⇩[i] L1 ≡ K1.
84 /2 width=7 by llpx_sn_fwd_ldrop_dx/ qed-.
85
86 lemma lleq_fwd_bind_sn: ∀a,I,L1,L2,V,T,d.
87                         L1 ⋕[ⓑ{a,I}V.T, d] L2 → L1 ⋕[V, d] L2.
88 /2 width=4 by llpx_sn_fwd_bind_sn/ qed-.
89
90 lemma lleq_fwd_bind_dx: ∀a,I,L1,L2,V,T,d.
91                         L1 ⋕[ⓑ{a,I}V.T, d] L2 → L1.ⓑ{I}V ⋕[T, ⫯d] L2.ⓑ{I}V.
92 /2 width=2 by llpx_sn_fwd_bind_dx/ qed-.
93
94 lemma lleq_fwd_flat_sn: ∀I,L1,L2,V,T,d.
95                         L1 ⋕[ⓕ{I}V.T, d] L2 → L1 ⋕[V, d] L2.
96 /2 width=3 by llpx_sn_fwd_flat_sn/ qed-.
97
98 lemma lleq_fwd_flat_dx: ∀I,L1,L2,V,T,d.
99                         L1 ⋕[ⓕ{I}V.T, d] L2 → L1 ⋕[T, d] L2.
100 /2 width=3 by llpx_sn_fwd_flat_dx/ qed-.
101
102 (* Basic properties *********************************************************)
103
104 lemma lleq_sort: ∀L1,L2,d,k. |L1| = |L2| → L1 ⋕[⋆k, d] L2.
105 /2 width=1 by llpx_sn_sort/ qed.
106
107 lemma lleq_skip: ∀L1,L2,d,i. yinj i < d → |L1| = |L2| → L1 ⋕[#i, d] L2.
108 /2 width=1 by llpx_sn_skip/ qed.
109
110 lemma lleq_lref: ∀I,L1,L2,K1,K2,V,d,i. d ≤ yinj i →
111                  ⇩[i] L1 ≡ K1.ⓑ{I}V → ⇩[i] L2 ≡ K2.ⓑ{I}V →
112                  K1 ⋕[V, 0] K2 → L1 ⋕[#i, d] L2.
113 /2 width=9 by llpx_sn_lref/ qed.
114
115 lemma lleq_free: ∀L1,L2,d,i. |L1| ≤ i → |L2| ≤ i → |L1| = |L2| → L1 ⋕[#i, d] L2.
116 /2 width=1 by llpx_sn_free/ qed.
117
118 lemma lleq_gref: ∀L1,L2,d,p. |L1| = |L2| → L1 ⋕[§p, d] L2.
119 /2 width=1 by llpx_sn_gref/ qed.
120
121 lemma lleq_bind: ∀a,I,L1,L2,V,T,d.
122                  L1 ⋕[V, d] L2 → L1.ⓑ{I}V ⋕[T, ⫯d] L2.ⓑ{I}V →
123                  L1 ⋕[ⓑ{a,I}V.T, d] L2.
124 /2 width=1 by llpx_sn_bind/ qed.
125
126 lemma lleq_flat: ∀I,L1,L2,V,T,d.
127                  L1 ⋕[V, d] L2 → L1 ⋕[T, d] L2 → L1 ⋕[ⓕ{I}V.T, d] L2.
128 /2 width=1 by llpx_sn_flat/ qed.
129
130 lemma lleq_refl: ∀d,T. reflexive … (lleq d T).
131 /2 width=1 by llpx_sn_refl/ qed.
132
133 lemma lleq_Y: ∀L1,L2,T. |L1| = |L2| → L1 ⋕[T, ∞] L2.
134 /2 width=1 by llpx_sn_Y/ qed.
135
136 lemma lleq_sym: ∀d,T. symmetric … (lleq d T).
137 #d #T #L1 #L2 #H @(lleq_ind … H) -d -T -L1 -L2
138 /2 width=7 by lleq_sort, lleq_skip, lleq_lref, lleq_free, lleq_gref, lleq_bind, lleq_flat/
139 qed-.
140
141 lemma lleq_ge_up: ∀L1,L2,U,dt. L1 ⋕[U, dt] L2 →
142                   ∀T,d,e. ⇧[d, e] T ≡ U →
143                   dt ≤ d + e → L1 ⋕[U, d] L2.
144 /2 width=6 by llpx_sn_ge_up/ qed-.
145
146 lemma lleq_ge: ∀L1,L2,T,d1. L1 ⋕[T, d1] L2 → ∀d2. d1 ≤ d2 → L1 ⋕[T, d2] L2.
147 /2 width=3 by llpx_sn_ge/ qed-.
148
149 lemma lleq_bind_O: ∀a,I,L1,L2,V,T. L1 ⋕[V, 0] L2 → L1.ⓑ{I}V ⋕[T, 0] L2.ⓑ{I}V →
150                    L1 ⋕[ⓑ{a,I}V.T, 0] L2.
151 /2 width=1 by llpx_sn_bind_O/ qed-.