]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_computation/cpre_cpre.ma
some restyling ...
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_computation / cpre_cpre.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/rt_computation/cprs_cnr.ma".
16 include "basic_2/rt_computation/cprs_cprs.ma".
17 include "basic_2/rt_computation/cpre.ma".
18
19 (* EVALUATION FOR CONTEXT-SENSITIVE PARALLEL R-TRANSITION ON TERMS *********)
20
21 (* Properties with context-sensitive parallel r-computation for terms ******)
22
23 lemma cpre_cprs_conf (h) (G) (L) (T):
24       ∀T1. ⦃G,L⦄ ⊢ T ➡*[h] T1 → ∀T2. ⦃G,L⦄ ⊢ T ➡*[h] 𝐍⦃T2⦄ → ⦃G,L⦄ ⊢ T1 ➡*[h] 𝐍⦃T2⦄.
25 #h #G #L #T0 #T1 #HT01 #T2 * #HT02 #HT2
26 elim (cprs_conf … HT01 … HT02) -T0 #T0 #HT10 #HT20
27 lapply (cprs_inv_cnr_sn … HT20 HT2) -HT20 #H destruct
28 /2 width=1 by conj/
29 qed-.
30
31 (* Main properties *********************************************************)
32
33 (* Basic_1: was: nf2_pr3_confluence *)
34 theorem cpre_mono (h) (G) (L) (T):
35         ∀T1. ⦃G,L⦄ ⊢ T ➡*[h] 𝐍⦃T1⦄ → ∀T2. ⦃G,L⦄ ⊢ T ➡*[h] 𝐍⦃T2⦄ → T1 = T2.
36 #h #G #L #T0 #T1 * #HT01 #HT1 #T2 * #HT02 #HT2
37 elim (cprs_conf … HT01 … HT02) -T0 #T0 #HT10 #HT20
38 >(cprs_inv_cnr_sn … HT10 HT1) -T1
39 >(cprs_inv_cnr_sn … HT20 HT2) -T2 //
40 qed-.