1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/rt_computation/fpbg_fqup.ma".
16 include "basic_2/rt_computation/fpbg_feqg.ma".
17 include "basic_2/rt_computation/fsb_feqg.ma".
19 (* STRONGLY NORMALIZING CLOSURES FOR PARALLEL RST-TRANSITION ****************)
21 (* Properties with parallel rst-computation for closures ********************)
24 ∀G1,L1,T1. ≥𝐒 ❨G1,L1,T1❩ →
25 ∀G2,L2,T2. ❨G1,L1,T1❩ ≥ ❨G2,L2,T2❩ → ≥𝐒 ❨G2,L2,T2❩.
26 #G1 #L1 #T1 #H @(fsb_ind … H) -G1 -L1 -T1
27 #G1 #L1 #T1 #H1 #IH #G2 #L2 #T2 #H12
28 elim (fpbs_inv_fpbg … H12) -H12
29 [ -IH /2 width=9 by fsb_feqg_trans/
30 | -H1 #H elim (fpbg_inv_fpbc_fpbs … H)
35 (* Properties with parallel rst-transition for closures *********************)
38 ∀G1,L1,T1. ≥𝐒 ❨G1,L1,T1❩ →
39 ∀G2,L2,T2. ❨G1,L1,T1❩ ≽ ❨G2,L2,T2❩ → ≥𝐒 ❨G2,L2,T2❩.
40 /3 width=5 by fsb_fpbs_trans, fpb_fpbs/ qed-.
42 (* Properties with proper parallel rst-computation for closures *************)
46 (∀G2,L2,T2. ❨G1,L1,T1❩ > ❨G2,L2,T2❩ → ≥𝐒 ❨G2,L2,T2❩) →
48 /4 width=1 by fsb_intro, fpbc_fpbg/ qed.
50 (* Eliminators with proper parallel rst-computation for closures ************)
52 lemma fsb_ind_fpbg_fpbs (Q:relation3 …):
53 (∀G1,L1,T1. ≥𝐒 ❨G1,L1,T1❩ →
54 (∀G2,L2,T2. ❨G1,L1,T1❩ > ❨G2,L2,T2❩ → Q G2 L2 T2) →
57 ∀G1,L1,T1. ≥𝐒 ❨G1,L1,T1❩ →
58 ∀G2,L2,T2. ❨G1,L1,T1❩ ≥ ❨G2,L2,T2❩ → Q G2 L2 T2.
59 #Q #IH1 #G1 #L1 #T1 #H @(fsb_ind … H) -G1 -L1 -T1
60 #G1 #L1 #T1 #H1 #IH #G2 #L2 #T2 #H12
62 [ -IH /2 width=5 by fsb_fpbs_trans/
63 | -H1 #G0 #L0 #T0 #H10
64 lapply (fpbs_fpbg_trans … H12 … H10) -G2 -L2 -T2 #H
65 elim (fpbg_inv_fpbc_fpbs … H) -H #G #L #T #H1 #H0
70 lemma fsb_ind_fpbg (Q:relation3 …):
71 (∀G1,L1,T1. ≥𝐒 ❨G1,L1,T1❩ →
72 (∀G2,L2,T2. ❨G1,L1,T1❩ > ❨G2,L2,T2❩ → Q G2 L2 T2) →
75 ∀G1,L1,T1. ≥𝐒 ❨G1,L1,T1❩ → Q G1 L1 T1.
76 #Q #IH #G1 #L1 #T1 #H @(fsb_ind_fpbg_fpbs … H) -H
80 (* Inversion lemmas with proper parallel rst-computation for closures *******)
82 lemma fsb_fpbg_refl_false (G) (L) (T):
83 ≥𝐒 ❨G,L,T❩ → ❨G,L,T❩ > ❨G,L,T❩ → ⊥.
85 @(fsb_ind_fpbg … H) -G -L -T #G1 #L1 #T1 #_ #IH #H