]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/rt_computation/lprs_cprs.ma
update in ground
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / rt_computation / lprs_cprs.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/rt_computation/cprs_cprs.ma".
16 include "basic_2/rt_computation/lprs_cpms.ma".
17
18 (* PARALLEL R-COMPUTATION FOR FULL LOCAL ENVIRONMENTS ***********************)
19
20 (* Advanced properties ******************************************************)
21
22 (* Basic_2A1: was: lprs_pair2 *)
23 lemma lprs_pair_dx (h) (G): ∀L1,L2. ❪G,L1❫ ⊢ ➡*[h,0] L2 →
24                             ∀V1,V2. ❪G,L2❫ ⊢ V1 ➡*[h,0] V2 →
25                             ∀I. ❪G,L1.ⓑ[I]V1❫ ⊢ ➡*[h,0] L2.ⓑ[I]V2.
26 /3 width=3 by lprs_pair, lprs_cpms_trans/ qed.
27
28 (* Properties on context-sensitive parallel r-computation for terms *********)
29
30 lemma lprs_cprs_conf_dx (h) (G): ∀L0.∀T0,T1:term. ❪G,L0❫ ⊢ T0 ➡*[h,0] T1 →
31                                  ∀L1. ❪G,L0❫ ⊢ ➡*[h,0] L1 →
32                                  ∃∃T. ❪G,L1❫ ⊢ T1 ➡*[h,0] T & ❪G,L1❫ ⊢ T0 ➡*[h,0] T.
33 #h #G #L0 #T0 #T1 #HT01 #L1 #H
34 @(lprs_ind_dx … H) -L1 /2 width=3 by ex2_intro/
35 #L #L1 #_ #HL1 * #T #HT1 #HT0 -L0
36 elim (cprs_lpr_conf_dx … HT1 … HL1) -HT1 #T2 #HT2
37 elim (cprs_lpr_conf_dx … HT0 … HL1) -L #T3 #HT3
38 elim (cprs_conf … HT2 … HT3) -T
39 /3 width=5 by cprs_trans, ex2_intro/
40 qed-.
41
42 lemma lprs_cpr_conf_dx (h) (G): ∀L0. ∀T0,T1:term. ❪G,L0❫ ⊢ T0 ➡[h,0] T1 →
43                                 ∀L1. ❪G,L0❫ ⊢ ➡*[h,0] L1 →
44                                 ∃∃T. ❪G,L1❫ ⊢ T1 ➡*[h,0] T & ❪G,L1❫ ⊢ T0 ➡*[h,0] T.
45 /3 width=3 by lprs_cprs_conf_dx, cpm_cpms/ qed-.
46
47 (* Note: this can be proved on its own using lprs_ind_sn *)
48 lemma lprs_cprs_conf_sn (h) (G): ∀L0. ∀T0,T1:term. ❪G,L0❫ ⊢ T0 ➡*[h,0] T1 →
49                                  ∀L1. ❪G,L0❫ ⊢ ➡*[h,0] L1 →
50                                  ∃∃T. ❪G,L0❫ ⊢ T1 ➡*[h,0] T & ❪G,L1❫ ⊢ T0 ➡*[h,0] T.
51 #h #G #L0 #T0 #T1 #HT01 #L1 #HL01
52 elim (lprs_cprs_conf_dx … HT01 … HL01) -HT01
53 /3 width=3 by lprs_cpms_trans, ex2_intro/
54 qed-.
55
56 lemma lprs_cpr_conf_sn (h) (G): ∀L0. ∀T0,T1:term. ❪G,L0❫ ⊢ T0 ➡[h,0] T1 →
57                                 ∀L1. ❪G,L0❫ ⊢ ➡*[h,0] L1 →
58                                 ∃∃T. ❪G,L0❫ ⊢ T1 ➡*[h,0] T & ❪G,L1❫ ⊢ T0 ➡*[h,0] T.
59 /3 width=3 by lprs_cprs_conf_sn, cpm_cpms/ qed-.