1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "static_2/s_transition/fquq.ma".
16 include "basic_2/rt_transition/cpm_drops.ma".
17 include "basic_2/rt_transition/cpm_lsubr.ma".
18 include "basic_2/rt_transition/cpr.ma".
19 include "basic_2/rt_transition/lpr.ma".
21 (* PARALLEL R-TRANSITION FOR FULL LOCAL ENVIRONMENTS ************************)
23 (* Properties with extended structural successor for closures ***************)
25 lemma fqu_cpr_trans_sn (h) (b): ∀G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂[b] ❪G2,L2,T2❫ →
26 ∀U2. ❪G2,L2❫ ⊢ T2 ➡[h,0] U2 →
27 ∃∃L,U1. ❪G1,L1❫ ⊢ ➡[h,0] L & ❪G1,L1❫ ⊢ T1 ➡[h,0] U1 & ❪G1,L,U1❫ ⬂[b] ❪G2,L2,U2❫.
28 #h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
29 [ /3 width=5 by lpr_pair, fqu_lref_O, ex3_2_intro/
30 | /3 width=5 by cpr_pair_sn, fqu_pair_sn, ex3_2_intro/
31 | /3 width=5 by cpm_bind, fqu_bind_dx, ex3_2_intro/
32 | /3 width=5 by cpm_bind_unit, fqu_clear, ex3_2_intro/
33 | /3 width=5 by cpr_flat, fqu_flat_dx, ex3_2_intro/
34 | #I #G #K #U #T #HUT #U2 #HU2
35 elim (cpm_lifts_sn … HU2 (Ⓣ) … (K.ⓘ[I]) … HUT) -U
36 /3 width=5 by lpr_bind_refl_dx, fqu_drop, drops_refl, drops_drop, ex3_2_intro/
40 lemma fqu_cpr_trans_dx (h) (b): ∀G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂[b] ❪G2,L2,T2❫ →
41 ∀U2. ❪G2,L2❫ ⊢ T2 ➡[h,0] U2 →
42 ∃∃L,U1. ❪G1,L1❫ ⊢ ➡[h,0] L & ❪G1,L❫ ⊢ T1 ➡[h,0] U1 & ❪G1,L,U1❫ ⬂[b] ❪G2,L2,U2❫.
43 #h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
44 [ /3 width=5 by lpr_pair, fqu_lref_O, ex3_2_intro/
45 | /3 width=5 by cpr_pair_sn, fqu_pair_sn, ex3_2_intro/
46 | /3 width=5 by cpm_bind, fqu_bind_dx, ex3_2_intro/
47 | /3 width=5 by cpm_bind_unit, fqu_clear, ex3_2_intro/
48 | /3 width=5 by cpr_flat, fqu_flat_dx, ex3_2_intro/
49 | #I #G #K #U #T #HUT #U2 #HU2
50 elim (cpm_lifts_sn … HU2 (Ⓣ) … (K.ⓘ[I]) … HUT) -U
51 /3 width=5 by lpr_bind_refl_dx, fqu_drop, drops_refl, drops_drop, ex3_2_intro/
55 lemma fqu_lpr_trans (h) (b): ∀G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂[b] ❪G2,L2,T2❫ →
56 ∀K2. ❪G2,L2❫ ⊢ ➡[h,0] K2 →
57 ∃∃K1,T. ❪G1,L1❫ ⊢ ➡[h,0] K1 & ❪G1,L1❫ ⊢ T1 ➡[h,0] T & ❪G1,K1,T❫ ⬂[b] ❪G2,K2,T2❫.
58 #h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
59 [ /3 width=5 by lpr_bind_refl_dx, fqu_lref_O, ex3_2_intro/
60 | /3 width=5 by cpr_pair_sn, fqu_pair_sn, ex3_2_intro/
61 | #p #I #G2 #L2 #V2 #T2 #Hb #X #H
62 elim (lpr_inv_pair_sn … H) -H #K2 #W2 #HLK2 #HVW2 #H destruct
63 /3 width=5 by cpr_pair_sn, fqu_bind_dx, ex3_2_intro/
64 | #p #I #G2 #L2 #V2 #T2 #Hb #X #H
65 elim (lpr_inv_unit_sn … H) -H #K2 #HLK2 #H destruct
66 /3 width=5 by cpr_pair_sn, fqu_clear, ex3_2_intro/
67 | /3 width=5 by cpr_pair_sn, fqu_flat_dx, ex3_2_intro/
68 | /3 width=5 by lpr_bind_refl_dx, fqu_drop, ex3_2_intro/
72 (* Note: does not hold in Basic_2A1 because it requires cpm *)
73 (* Note: L1 = K0.ⓛV0 and T1 = #0 require n = 1 *)
74 lemma lpr_fqu_trans (h) (b): ∀G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂[b] ❪G2,L2,T2❫ →
75 ∀K1. ❪G1,K1❫ ⊢ ➡[h,0] L1 →
76 ∃∃n,K2,T. ❪G1,K1❫ ⊢ T1 ➡[h,n] T & ❪G1,K1,T❫ ⬂[b] ❪G2,K2,T2❫ & ❪G2,K2❫ ⊢ ➡[h,0] L2 & n ≤ 1.
77 #h #b #G1 #G2 #L1 #L2 #T1 #T2 #H elim H -G1 -G2 -L1 -L2 -T1 -T2
79 elim (lpr_inv_pair_dx … H) -H #K0 #V0 #HK0 #HV0 #H destruct
80 elim (lifts_total V (𝐔❨1❩)) #T #HVT
81 /3 width=7 by cpm_ell, cpm_delta, fqu_drop, ex4_3_intro/
82 | /3 width=7 by cpr_pair_sn, fqu_pair_sn, ex4_3_intro/
83 | /3 width=7 by lpr_bind_refl_dx, cpr_pair_sn, fqu_bind_dx, ex4_3_intro/
84 | /3 width=7 by lpr_bind_refl_dx, cpr_pair_sn, fqu_clear, ex4_3_intro/
85 | /3 width=7 by cpr_pair_sn, fqu_flat_dx, ex4_3_intro/
86 | #I #G #K #T #U #HTU #K1 #H
87 elim (lpr_inv_bind_dx … H) -H #I0 #K0 #HK0 #HI0 #H destruct
88 /3 width=7 by fqu_drop, ex4_3_intro/
92 (* Properties with extended optional structural successor for closures ******)
94 lemma fquq_cpr_trans_sn (h) (b): ∀G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂⸮[b] ❪G2,L2,T2❫ →
95 ∀U2. ❪G2,L2❫ ⊢ T2 ➡[h,0] U2 →
96 ∃∃L,U1. ❪G1,L1❫ ⊢ ➡[h,0] L & ❪G1,L1❫ ⊢ T1 ➡[h,0] U1 & ❪G1,L,U1❫ ⬂⸮[b] ❪G2,L2,U2❫.
97 #h #b #G1 #G2 #L1 #L2 #T1 #T2 #H #U2 #HTU2 cases H -H
98 [ #HT12 elim (fqu_cpr_trans_sn … HT12 … HTU2) /3 width=5 by fqu_fquq, ex3_2_intro/
99 | * #H1 #H2 #H3 destruct /2 width=5 by ex3_2_intro/
103 lemma fquq_cpr_trans_dx (h) (b): ∀G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂⸮[b] ❪G2,L2,T2❫ →
104 ∀U2. ❪G2,L2❫ ⊢ T2 ➡[h,0] U2 →
105 ∃∃L,U1. ❪G1,L1❫ ⊢ ➡[h,0] L & ❪G1,L❫ ⊢ T1 ➡[h,0] U1 & ❪G1,L,U1❫ ⬂⸮[b] ❪G2,L2,U2❫.
106 #h #b #G1 #G2 #L1 #L2 #T1 #T2 #H #U2 #HTU2 cases H -H
107 [ #HT12 elim (fqu_cpr_trans_dx … HT12 … HTU2) /3 width=5 by fqu_fquq, ex3_2_intro/
108 | * #H1 #H2 #H3 destruct /2 width=5 by ex3_2_intro/
112 lemma fquq_lpr_trans (h) (b): ∀G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂⸮[b] ❪G2,L2,T2❫ →
113 ∀K2. ❪G2,L2❫ ⊢ ➡[h,0] K2 →
114 ∃∃K1,T. ❪G1,L1❫ ⊢ ➡[h,0] K1 & ❪G1,L1❫ ⊢ T1 ➡[h,0] T & ❪G1,K1,T❫ ⬂⸮[b] ❪G2,K2,T2❫.
115 #h #b #G1 #G2 #L1 #L2 #T1 #T2 #H #K2 #HLK2 cases H -H
116 [ #H12 elim (fqu_lpr_trans … H12 … HLK2) /3 width=5 by fqu_fquq, ex3_2_intro/
117 | * #H1 #H2 #H3 destruct /2 width=5 by ex3_2_intro/
121 lemma lpr_fquq_trans (h) (b): ∀G1,G2,L1,L2,T1,T2. ❪G1,L1,T1❫ ⬂⸮[b] ❪G2,L2,T2❫ →
122 ∀K1. ❪G1,K1❫ ⊢ ➡[h,0] L1 →
123 ∃∃n,K2,T. ❪G1,K1❫ ⊢ T1 ➡[h,n] T & ❪G1,K1,T❫ ⬂⸮[b] ❪G2,K2,T2❫ & ❪G2,K2❫ ⊢ ➡[h,0] L2 & n ≤ 1.
124 #h #b #G1 #G2 #L1 #L2 #T1 #T2 #H #K1 #HKL1 cases H -H
125 [ #H12 elim (lpr_fqu_trans … H12 … HKL1) -L1 /3 width=7 by fqu_fquq, ex4_3_intro/
126 | * #H1 #H2 #H3 destruct /2 width=7 by ex4_3_intro/