]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/static/lsubr_lsubr.ma
basic_2: stronger supclosure allows better inversion lemmas
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / static / lsubr_lsubr.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/static/lsubr.ma".
16
17 (* RESTRICTED REFINEMENT FOR LOCAL ENVIRONMENTS *****************************)
18
19 (* Auxiliary inversion lemmas ***********************************************)
20
21 fact lsubr_inv_pair1_aux: ∀L1,L2. L1 ⫃ L2 → ∀I,K1,X. L1 = K1.ⓑ{I}X →
22                           ∨∨ L2 = ⋆
23                            | ∃∃K2. K1 ⫃ K2 & L2 = K2.ⓑ{I}X
24                            | ∃∃K2,V,W. K1 ⫃ K2 & L2 = K2.ⓛW &
25                                        I = Abbr & X = ⓝW.V.
26 #L1 #L2 * -L1 -L2
27 [ #L #J #K1 #X #H destruct /2 width=1 by or3_intro0/
28 | #I #L1 #L2 #V #HL12 #J #K1 #X #H destruct /3 width=3 by or3_intro1, ex2_intro/
29 | #L1 #L2 #V #W #HL12 #J #K1 #X #H destruct /3 width=6 by or3_intro2, ex4_3_intro/
30 ]
31 qed-.
32
33 lemma lsubr_inv_pair1: ∀I,K1,L2,X. K1.ⓑ{I}X ⫃ L2 →
34                        ∨∨ L2 = ⋆
35                         | ∃∃K2. K1 ⫃ K2 & L2 = K2.ⓑ{I}X
36                         | ∃∃K2,V,W. K1 ⫃ K2 & L2 = K2.ⓛW &
37                                     I = Abbr & X = ⓝW.V.
38 /2 width=3 by lsubr_inv_pair1_aux/ qed-.
39
40 (* Main properties **********************************************************)
41
42 theorem lsubr_trans: Transitive … lsubr.
43 #L1 #L #H elim H -L1 -L
44 [ #L1 #X #H
45   lapply (lsubr_inv_atom1 … H) -H //
46 | #I #L1 #L #V #_ #IHL1 #X #H
47   elim (lsubr_inv_pair1 … H) -H // *
48   #L2 [2: #V2 #W2 ] #HL2 #H1 [ #H2 #H3 ] destruct /3 width=1 by lsubr_pair, lsubr_beta/
49 | #L1 #L #V1 #W #_ #IHL1 #X #H
50   elim (lsubr_inv_abst1 … H) -H // *
51   #L2 #HL2 #H destruct /3 width=1 by lsubr_beta/
52 ]
53 qed-.