]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2/substitution/cpys_lift.ma
3cf6f8b31ff67ba044fdfd47221b9453b946e988
[helm.git] / matita / matita / contribs / lambdadelta / basic_2 / substitution / cpys_lift.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/relocation/cpy_lift.ma".
16 include "basic_2/substitution/cpys.ma".
17
18 (* CONTEXT-SENSITIVE EXTENDED MULTIPLE SUBSTITUTION FOR TERMS ***************)
19
20 (* Advanced properties ******************************************************)
21
22 lemma cpys_subst: ∀I,G,L,K,V,U1,i,d,e.
23                   d ≤ yinj i → i < d + e →
24                   ⇩[0, i] L ≡ K.ⓑ{I}V → ⦃G, K⦄ ⊢ V ▶*×[0, ⫰(d+e-i)] U1 →
25                   ∀U2. ⇧[0, i+1] U1 ≡ U2 → ⦃G, L⦄ ⊢ #i ▶*×[d, e] U2.
26 #I #G #L #K #V #U1 #i #d #e #Hdi #Hide #HLK #H @(cpys_ind … H) -U1
27 [ /3 width=5 by cpy_cpys, cpy_subst/
28 | #U #U1 #_ #HU1 #IHU #U2 #HU12
29   elim (lift_total U 0 (i+1)) #U0 #HU0
30   lapply (IHU … HU0) -IHU #H
31   lapply (ldrop_fwd_ldrop2 … HLK) -HLK #HLK
32   lapply (cpy_lift_ge … HU1 … HLK HU0 HU12 ?) -HU1 -HLK -HU0 -HU12 // #HU02
33   lapply (cpy_weak … HU02 d e ? ?) -HU02
34   [2,3: /2 width=3 by cpys_strap1, yle_succ_dx/ ]
35   >yplus_O_sn <yplus_inj >ymax_pre_sn_comm /2 width=1 by ylt_fwd_le_succ/
36 ]
37 qed.
38
39 (* Advanced inverion lemmas *************************************************)
40
41 lemma cpys_inv_atom1: ∀I,G,L,T2,d,e. ⦃G, L⦄ ⊢ ⓪{I} ▶*×[d, e] T2 →
42                       T2 = ⓪{I} ∨
43                       ∃∃J,K,V1,V2,i. d ≤ yinj i & i < d + e &
44                                     ⇩[O, i] L ≡ K.ⓑ{J}V1 &
45                                      ⦃G, K⦄ ⊢ V1 ▶*×[0, d+e-i-1] V2 &
46                                      ⇧[O, i+1] V2 ≡ T2 &
47                                      I = LRef i.
48 #I #G #L #T2 #d #e #H @(cpys_ind … H) -T2
49 [ /2 width=1 by or_introl/
50 | #T #T2 #_ #HT2 *
51   [ #H destruct
52     elim (cpy_inv_atom1 … HT2) -HT2 [ /2 width=1 by or_introl/ | * /3 width=11 by ex6_5_intro, or_intror/ ]
53   | * #J #K #V1 #V #i #Hdi #Hide #HLK #HV1 #HVT #HI
54     lapply (ldrop_fwd_ldrop2 … HLK) #H
55     elim (cpy_inv_lift1_ge_up … HT2 … H … HVT) -HT2 -H -HVT
56     [2,3,4: /2 width=1 by ylt_fwd_le_succ, yle_succ_dx/ ]
57     /4 width=11 by cpys_strap1, ex6_5_intro, or_intror/
58   ]
59 ]
60 qed-.
61
62 lemma cpys_inv_lref1: ∀G,L,T2,i,d,e. ⦃G, L⦄ ⊢ #i ▶*×[d, e] T2 →
63                       T2 = #i ∨
64                       ∃∃I,K,V1,V2. d ≤ i & i < d + e &
65                                    ⇩[O, i] L ≡ K.ⓑ{I}V1 &
66                                    ⦃G, K⦄ ⊢ V1 ▶*×[0, d+e-i-1] V2 &
67                                    ⇧[O, i+1] V2 ≡ T2.
68 #G #L #T2 #i #d #e #H elim (cpys_inv_atom1 … H) -H /2 width=1 by or_introl/
69 * #I #K #V1 #V2 #j #Hdj #Hjde #HLK #HV12 #HVT2 #H destruct /3 width=7 by ex5_4_intro, or_intror/
70 qed-.
71
72 (* Relocation properties ****************************************************)
73
74 lemma cpys_lift_le: ∀G,K,T1,T2,dt,et. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et] T2 →
75                     ∀L,U1,d,e. dt + et ≤ yinj d → ⇩[d, e] L ≡ K →
76                     ⇧[d, e] T1 ≡ U1 → ∀U2. ⇧[d, e] T2 ≡ U2 →
77                     ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2.
78 #G #K #T1 #T2 #dt #et #H #L #U1 #d #e #Hdetd #HLK #HTU1 @(cpys_ind … H) -T2
79 [ #U2 #H >(lift_mono … HTU1 … H) -H //
80 | -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2
81   elim (lift_total T d e) #U #HTU
82   lapply (IHT … HTU) -IHT #HU1
83   lapply (cpy_lift_le … HT2 … HLK HTU HTU2 ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/
84 ]
85 qed-.
86
87 lemma cpys_lift_be: ∀G,K,T1,T2,dt,et. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et] T2 →
88                     ∀L,U1,d,e. dt ≤ yinj d → d ≤ dt + et →
89                     ⇩[d, e] L ≡ K → ⇧[d, e] T1 ≡ U1 →
90                     ∀U2. ⇧[d, e] T2 ≡ U2 → ⦃G, L⦄ ⊢ U1 ▶*×[dt, et + e] U2.
91 #G #K #T1 #T2 #dt #et #H #L #U1 #d #e #Hdtd #Hddet #HLK #HTU1 @(cpys_ind … H) -T2
92 [ #U2 #H >(lift_mono … HTU1 … H) -H //
93 | -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2
94   elim (lift_total T d e) #U #HTU
95   lapply (IHT … HTU) -IHT #HU1
96   lapply (cpy_lift_be … HT2 … HLK HTU HTU2 ? ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/
97 ]
98 qed-.
99
100 lemma cpys_lift_ge: ∀G,K,T1,T2,dt,et. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et] T2 →
101                     ∀L,U1,d,e. yinj d ≤ dt → ⇩[d, e] L ≡ K →
102                     ⇧[d, e] T1 ≡ U1 → ∀U2. ⇧[d, e] T2 ≡ U2 →
103                     ⦃G, L⦄ ⊢ U1 ▶*×[dt+e, et] U2.
104 #G #K #T1 #T2 #dt #et #H #L #U1 #d #e #Hddt #HLK #HTU1 @(cpys_ind … H) -T2
105 [ #U2 #H >(lift_mono … HTU1 … H) -H //
106 | -HTU1 #T #T2 #_ #HT2 #IHT #U2 #HTU2
107   elim (lift_total T d e) #U #HTU
108   lapply (IHT … HTU) -IHT #HU1
109   lapply (cpy_lift_ge … HT2 … HLK HTU HTU2 ?) -HT2 -HLK -HTU -HTU2 /2 width=3 by cpys_strap1/
110 ]
111 qed-.
112
113 lemma cpys_inv_lift1_le: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 →
114                          ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 →
115                          dt + et ≤ d →
116                          ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et] T2 & ⇧[d, e] T2 ≡ U2.
117 #G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdetd @(cpys_ind … H) -U2
118 [ /2 width=3 by ex2_intro/
119 | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU
120   elim (cpy_inv_lift1_le … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/
121 ]
122 qed-.
123
124 lemma cpys_inv_lift1_be: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 →
125                          ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 →
126                          dt ≤ d → d + e ≤ dt + et →
127                          ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt, et - e] T2 & ⇧[d, e] T2 ≡ U2.
128 #G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdtd #Hdedet @(cpys_ind … H) -U2
129 [ /2 width=3 by ex2_intro/
130 | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU
131   elim (cpy_inv_lift1_be … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/
132 ]
133 qed-.
134
135 lemma cpys_inv_lift1_ge: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 →
136                          ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 →
137                          d + e ≤ dt →
138                          ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt - e, et] T2 & ⇧[d, e] T2 ≡ U2.
139 #G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdedt @(cpys_ind … H) -U2
140 [ /2 width=3 by ex2_intro/
141 | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU
142   elim (cpy_inv_lift1_ge … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/
143 ]
144 qed-.
145
146 lemma cpys_inv_lift1_eq: ∀G,L,U1,U2. ∀d,e:nat.
147                          ⦃G, L⦄ ⊢ U1 ▶*×[d, e] U2 → ∀T1. ⇧[d, e] T1 ≡ U1 → U1 = U2.
148 #G #L #U1 #U2 #d #e #H #T1 #HTU1 @(cpys_ind … H) -U2 //
149 #U #U2 #_ #HU2 #IHU destruct
150 <(cpy_inv_lift1_eq … HTU1 … HU2) -HU2 -HTU1 //
151 qed-.
152
153 lemma cpys_inv_lift1_ge_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 →
154                             ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 →
155                             d ≤ dt → dt ≤ d + e → d + e ≤ dt + et →
156                             ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[d, dt + et - (d + e)] T2 &
157                                  ⇧[d, e] T2 ≡ U2.
158 #G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hddt #Hdtde #Hdedet @(cpys_ind … H) -U2
159 [ /2 width=3 by ex2_intro/
160 | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU
161   elim (cpy_inv_lift1_ge_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/
162 ]
163 qed-.
164
165 lemma cpys_inv_lift1_be_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 →
166                             ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 →
167                             dt ≤ d → dt + et ≤ d + e →
168                             ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt, d - dt] T2 & ⇧[d, e] T2 ≡ U2.
169 #G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdtd #Hdetde @(cpys_ind … H) -U2
170 [ /2 width=3 by ex2_intro/
171 | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU
172   elim (cpy_inv_lift1_be_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/
173 ]
174 qed-.
175
176 lemma cpys_inv_lift1_le_up: ∀G,L,U1,U2,dt,et. ⦃G, L⦄ ⊢ U1 ▶*×[dt, et] U2 →
177                             ∀K,d,e. ⇩[d, e] L ≡ K → ∀T1. ⇧[d, e] T1 ≡ U1 →
178                             dt ≤ d → d ≤ dt + et → dt + et ≤ d + e →
179                             ∃∃T2. ⦃G, K⦄ ⊢ T1 ▶*×[dt, d - dt] T2 & ⇧[d, e] T2 ≡ U2.
180 #G #L #U1 #U2 #dt #et #H #K #d #e #HLK #T1 #HTU1 #Hdtd #Hddet #Hdetde @(cpys_ind … H) -U2
181 [ /2 width=3 by ex2_intro/
182 | -HTU1 #U #U2 #_ #HU2 * #T #HT1 #HTU
183   elim (cpy_inv_lift1_le_up … HU2 … HLK … HTU) -HU2 -HLK -HTU /3 width=3 by cpys_strap1, ex2_intro/
184 ]
185 qed-.