1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/relocation/cpy_nlift.ma".
16 include "basic_2/substitution/cofrees_lift.ma".
18 (* CONTEXT-SENSITIVE EXCLUSION FROM FREE VARIABLES **************************)
20 (* Alternative definition of frees_ge ***************************************)
22 lemma nlift_frees: ∀L,U,d,i. (∀T. ⇧[i, 1] T ≡ U → ⊥) → (L ⊢ i ~ϵ 𝐅*[d]⦃U⦄ → ⊥).
23 #L #U #d #i #HnTU #H elim (cofrees_fwd_lift … H) -H /2 width=2 by/
26 lemma frees_inv_ge: ∀L,U,d,i. d ≤ yinj i → (L ⊢ i ~ϵ 𝐅*[d]⦃U⦄ → ⊥) →
27 (∀T. ⇧[i, 1] T ≡ U → ⊥) ∨
28 ∃∃I,K,W,j. d ≤ yinj j & j < i & ⇩[j]L ≡ K.ⓑ{I}W &
29 (K ⊢ i-j-1 ~ϵ 𝐅*[yinj 0]⦃W⦄ → ⊥) & (∀T. ⇧[j, 1] T ≡ U → ⊥).
30 #L #U #d #i #Hdi #H @(frees_ind … H) -U /3 width=2 by or_introl/
32 [ #HnU2 elim (cpy_fwd_nlift2_ge … HU12 … HnU2) -HU12 -HnU2 /3 width=2 by or_introl/
33 * /5 width=9 by nlift_frees, ex5_4_intro, or_intror/
34 | * #I2 #K2 #W2 #j2 #Hdj2 #Hj2i #HLK2 #HnW2 #HnU2 elim (cpy_fwd_nlift2_ge … HU12 … HnU2) -HU12 -HnU2 /4 width=9 by ex5_4_intro, or_intror/
35 * #I1 #K1 #W1 #j1 #Hdj1 #Hj12 #HLK1 #HnW1 #HnU1
36 lapply (ldrop_conf_ge … HLK1 … HLK2 ?) -HLK2 /2 width=1 by lt_to_le/
37 #HK12 lapply (ldrop_inv_drop1_lt … HK12 ?) /2 width=1 by lt_plus_to_minus_r/ -HK12
39 @or_intror @(ex5_4_intro … HLK1 … HnU1) -HLK1 -HnU1 /2 width=3 by transitive_lt/
40 @(frees_be … HK12 … HnW1) /2 width=1 by arith_k_sn/ -HK12 -HnW1
41 >minus_plus in ⊢ (??(?(?%?)?)??→?); >minus_plus in ⊢ (??(?(??%)?)??→?); >arith_b1 /2 width=1 by/
45 lemma frees_ind_ge: ∀R:relation4 ynat nat lenv term.
46 (∀d,i,L,U. d ≤ yinj i → (∀T. ⇧[i, 1] T ≡ U → ⊥) → R d i L U) →
47 (∀d,i,j,I,L,K,W,U. d ≤ yinj j → j < i → ⇩[j]L ≡ K.ⓑ{I}W → (K ⊢ i-j-1 ~ϵ 𝐅*[0]⦃W⦄ → ⊥) → (∀T. ⇧[j, 1] T ≡ U → ⊥) → R 0 (i-j-1) K W → R d i L U) →
48 ∀d,i,L,U. d ≤ yinj i → (L ⊢ i ~ϵ 𝐅*[d]⦃U⦄ → ⊥) → R d i L U.
49 #R #IH1 #IH2 #d #i #L #U
50 generalize in match d; -d generalize in match i; -i
51 @(f2_ind … rfw … L U) -L -U
52 #n #IHn #L #U #Hn #i #d #Hdi #H elim (frees_inv_ge … H) -H /3 width=2 by/
53 -IH1 * #I #K #W #j #Hdj #Hji #HLK #HnW #HnU destruct /4 width=12 by ldrop_fwd_rfw/