]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/basic_2A/etc/llpx/llsx.etc
update in delayed_updating
[helm.git] / matita / matita / contribs / lambdadelta / basic_2A / etc / llpx / llsx.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "basic_2/notation/relations/lazysn_6.ma".
16 include "basic_2/substitution/lleq.ma".
17 include "basic_2/reduction/llpx.ma".
18
19 (* LAZY SN EXTENDED STRONGLY NORMALIZING LOCAL ENVIRONMENTS *****************)
20
21 definition llsx: ∀h. sd h → relation4 ynat term genv lenv ≝
22                  λh,g,d,T,G. SN … (llpx h g G d T) (lleq d T).
23
24 interpretation
25    "lazy extended strong normalization (local environment)"
26    'LazySN h g d T G L = (llsx h g T d G L).
27
28 (* Basic eliminators ********************************************************)
29
30 lemma llsx_ind: ∀h,g,G,T,d. ∀R:predicate lenv.
31                 (∀L1. G ⊢ ⋕⬊*[h, g, T, d] L1 →
32                       (∀L2. ⦃G, L1⦄ ⊢ ➡[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → R L2) →
33                       R L1
34                 ) →
35                 ∀L. G ⊢ ⋕⬊*[h, g, T, d] L → R L.
36 #h #g #G #T #d #R #H0 #L1 #H elim H -L1
37 /5 width=1 by lleq_sym, SN_intro/
38 qed-.
39
40 (* Basic properties *********************************************************)
41
42 lemma llsx_intro: ∀h,g,G,L1,T,d.
43                   (∀L2. ⦃G, L1⦄ ⊢ ➡[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → G ⊢ ⋕⬊*[h, g, T, d] L2) →
44                   G ⊢ ⋕⬊*[h, g, T, d] L1.
45 /5 width=1 by lleq_sym, SN_intro/ qed.
46
47 lemma llsx_sort: ∀h,g,G,L,d,k. G ⊢ ⋕⬊*[h, g, ⋆k, d] L.
48 #h #g #G #L1 #d #k @llsx_intro
49 #L2 #HL12 #H elim H -H
50 /3 width=6 by llpx_fwd_length, lleq_sort/
51 qed.
52
53 lemma llsx_gref: ∀h,g,G,L,d,p. G ⊢ ⋕⬊*[h, g, §p, d] L.
54 #h #g #G #L1 #d #p @llsx_intro
55 #L2 #HL12 #H elim H -H
56 /3 width=6 by llpx_fwd_length, lleq_gref/
57 qed.