1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2/notation/relations/lazysn_6.ma".
16 include "basic_2/substitution/lleq.ma".
17 include "basic_2/reduction/llpx.ma".
19 (* LAZY SN EXTENDED STRONGLY NORMALIZING LOCAL ENVIRONMENTS *****************)
21 definition llsx: ∀h. sd h → relation4 ynat term genv lenv ≝
22 λh,g,d,T,G. SN … (llpx h g G d T) (lleq d T).
25 "lazy extended strong normalization (local environment)"
26 'LazySN h g d T G L = (llsx h g T d G L).
28 (* Basic eliminators ********************************************************)
30 lemma llsx_ind: ∀h,g,G,T,d. ∀R:predicate lenv.
31 (∀L1. G ⊢ ⋕⬊*[h, g, T, d] L1 →
32 (∀L2. ⦃G, L1⦄ ⊢ ➡[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → R L2) →
35 ∀L. G ⊢ ⋕⬊*[h, g, T, d] L → R L.
36 #h #g #G #T #d #R #H0 #L1 #H elim H -L1
37 /5 width=1 by lleq_sym, SN_intro/
40 (* Basic properties *********************************************************)
42 lemma llsx_intro: ∀h,g,G,L1,T,d.
43 (∀L2. ⦃G, L1⦄ ⊢ ➡[h, g, T, d] L2 → (L1 ⋕[T, d] L2 → ⊥) → G ⊢ ⋕⬊*[h, g, T, d] L2) →
44 G ⊢ ⋕⬊*[h, g, T, d] L1.
45 /5 width=1 by lleq_sym, SN_intro/ qed.
47 lemma llsx_sort: ∀h,g,G,L,d,k. G ⊢ ⋕⬊*[h, g, ⋆k, d] L.
48 #h #g #G #L1 #d #k @llsx_intro
49 #L2 #HL12 #H elim H -H
50 /3 width=6 by llpx_fwd_length, lleq_sort/
53 lemma llsx_gref: ∀h,g,G,L,d,p. G ⊢ ⋕⬊*[h, g, §p, d] L.
54 #h #g #G #L1 #d #p @llsx_intro
55 #L2 #HL12 #H elim H -H
56 /3 width=6 by llpx_fwd_length, lleq_gref/