1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basic_2A/notation/relations/atomicarity_4.ma".
16 include "basic_2A/grammar/aarity.ma".
17 include "basic_2A/grammar/genv.ma".
18 include "basic_2A/substitution/drop.ma".
20 (* ATONIC ARITY ASSIGNMENT ON TERMS *****************************************)
23 inductive aaa: relation4 genv lenv term aarity ≝
24 | aaa_sort: ∀G,L,k. aaa G L (⋆k) (⓪)
25 | aaa_lref: ∀I,G,L,K,V,B,i. ⬇[i] L ≡ K. ⓑ{I}V → aaa G K V B → aaa G L (#i) B
26 | aaa_abbr: ∀a,G,L,V,T,B,A.
27 aaa G L V B → aaa G (L.ⓓV) T A → aaa G L (ⓓ{a}V.T) A
28 | aaa_abst: ∀a,G,L,V,T,B,A.
29 aaa G L V B → aaa G (L.ⓛV) T A → aaa G L (ⓛ{a}V.T) (②B.A)
30 | aaa_appl: ∀G,L,V,T,B,A. aaa G L V B → aaa G L T (②B.A) → aaa G L (ⓐV.T) A
31 | aaa_cast: ∀G,L,V,T,A. aaa G L V A → aaa G L T A → aaa G L (ⓝV.T) A
34 interpretation "atomic arity assignment (term)"
35 'AtomicArity G L T A = (aaa G L T A).
37 (* Basic inversion lemmas ***************************************************)
39 fact aaa_inv_sort_aux: ∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ∀k. T = ⋆k → A = ⓪.
40 #G #L #T #A * -G -L -T -A
42 | #I #G #L #K #V #B #i #_ #_ #k #H destruct
43 | #a #G #L #V #T #B #A #_ #_ #k #H destruct
44 | #a #G #L #V #T #B #A #_ #_ #k #H destruct
45 | #G #L #V #T #B #A #_ #_ #k #H destruct
46 | #G #L #V #T #A #_ #_ #k #H destruct
50 lemma aaa_inv_sort: ∀G,L,A,k. ⦃G, L⦄ ⊢ ⋆k ⁝ A → A = ⓪.
51 /2 width=6 by aaa_inv_sort_aux/ qed-.
53 fact aaa_inv_lref_aux: ∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ∀i. T = #i →
54 ∃∃I,K,V. ⬇[i] L ≡ K.ⓑ{I} V & ⦃G, K⦄ ⊢ V ⁝ A.
55 #G #L #T #A * -G -L -T -A
56 [ #G #L #k #i #H destruct
57 | #I #G #L #K #V #B #j #HLK #HB #i #H destruct /2 width=5 by ex2_3_intro/
58 | #a #G #L #V #T #B #A #_ #_ #i #H destruct
59 | #a #G #L #V #T #B #A #_ #_ #i #H destruct
60 | #G #L #V #T #B #A #_ #_ #i #H destruct
61 | #G #L #V #T #A #_ #_ #i #H destruct
65 lemma aaa_inv_lref: ∀G,L,A,i. ⦃G, L⦄ ⊢ #i ⁝ A →
66 ∃∃I,K,V. ⬇[i] L ≡ K. ⓑ{I} V & ⦃G, K⦄ ⊢ V ⁝ A.
67 /2 width=3 by aaa_inv_lref_aux/ qed-.
69 fact aaa_inv_gref_aux: ∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ∀p. T = §p → ⊥.
70 #G #L #T #A * -G -L -T -A
71 [ #G #L #k #q #H destruct
72 | #I #G #L #K #V #B #i #HLK #HB #q #H destruct
73 | #a #G #L #V #T #B #A #_ #_ #q #H destruct
74 | #a #G #L #V #T #B #A #_ #_ #q #H destruct
75 | #G #L #V #T #B #A #_ #_ #q #H destruct
76 | #G #L #V #T #A #_ #_ #q #H destruct
80 lemma aaa_inv_gref: ∀G,L,A,p. ⦃G, L⦄ ⊢ §p ⁝ A → ⊥.
81 /2 width=7 by aaa_inv_gref_aux/ qed-.
83 fact aaa_inv_abbr_aux: ∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ∀a,W,U. T = ⓓ{a}W. U →
84 ∃∃B. ⦃G, L⦄ ⊢ W ⁝ B & ⦃G, L.ⓓW⦄ ⊢ U ⁝ A.
85 #G #L #T #A * -G -L -T -A
86 [ #G #L #k #a #W #U #H destruct
87 | #I #G #L #K #V #B #i #_ #_ #a #W #U #H destruct
88 | #b #G #L #V #T #B #A #HV #HT #a #W #U #H destruct /2 width=2 by ex2_intro/
89 | #b #G #L #V #T #B #A #_ #_ #a #W #U #H destruct
90 | #G #L #V #T #B #A #_ #_ #a #W #U #H destruct
91 | #G #L #V #T #A #_ #_ #a #W #U #H destruct
95 lemma aaa_inv_abbr: ∀a,G,L,V,T,A. ⦃G, L⦄ ⊢ ⓓ{a}V. T ⁝ A →
96 ∃∃B. ⦃G, L⦄ ⊢ V ⁝ B & ⦃G, L.ⓓV⦄ ⊢ T ⁝ A.
97 /2 width=4 by aaa_inv_abbr_aux/ qed-.
99 fact aaa_inv_abst_aux: ∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ∀a,W,U. T = ⓛ{a}W. U →
100 ∃∃B1,B2. ⦃G, L⦄ ⊢ W ⁝ B1 & ⦃G, L.ⓛW⦄ ⊢ U ⁝ B2 & A = ②B1.B2.
101 #G #L #T #A * -G -L -T -A
102 [ #G #L #k #a #W #U #H destruct
103 | #I #G #L #K #V #B #i #_ #_ #a #W #U #H destruct
104 | #b #G #L #V #T #B #A #_ #_ #a #W #U #H destruct
105 | #b #G #L #V #T #B #A #HV #HT #a #W #U #H destruct /2 width=5 by ex3_2_intro/
106 | #G #L #V #T #B #A #_ #_ #a #W #U #H destruct
107 | #G #L #V #T #A #_ #_ #a #W #U #H destruct
111 lemma aaa_inv_abst: ∀a,G,L,W,T,A. ⦃G, L⦄ ⊢ ⓛ{a}W. T ⁝ A →
112 ∃∃B1,B2. ⦃G, L⦄ ⊢ W ⁝ B1 & ⦃G, L.ⓛW⦄ ⊢ T ⁝ B2 & A = ②B1.B2.
113 /2 width=4 by aaa_inv_abst_aux/ qed-.
115 fact aaa_inv_appl_aux: ∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ∀W,U. T = ⓐW.U →
116 ∃∃B. ⦃G, L⦄ ⊢ W ⁝ B & ⦃G, L⦄ ⊢ U ⁝ ②B.A.
117 #G #L #T #A * -G -L -T -A
118 [ #G #L #k #W #U #H destruct
119 | #I #G #L #K #V #B #i #_ #_ #W #U #H destruct
120 | #a #G #L #V #T #B #A #_ #_ #W #U #H destruct
121 | #a #G #L #V #T #B #A #_ #_ #W #U #H destruct
122 | #G #L #V #T #B #A #HV #HT #W #U #H destruct /2 width=3 by ex2_intro/
123 | #G #L #V #T #A #_ #_ #W #U #H destruct
127 lemma aaa_inv_appl: ∀G,L,V,T,A. ⦃G, L⦄ ⊢ ⓐV.T ⁝ A →
128 ∃∃B. ⦃G, L⦄ ⊢ V ⁝ B & ⦃G, L⦄ ⊢ T ⁝ ②B.A.
129 /2 width=3 by aaa_inv_appl_aux/ qed-.
131 fact aaa_inv_cast_aux: ∀G,L,T,A. ⦃G, L⦄ ⊢ T ⁝ A → ∀W,U. T = ⓝW. U →
132 ⦃G, L⦄ ⊢ W ⁝ A ∧ ⦃G, L⦄ ⊢ U ⁝ A.
133 #G #L #T #A * -G -L -T -A
134 [ #G #L #k #W #U #H destruct
135 | #I #G #L #K #V #B #i #_ #_ #W #U #H destruct
136 | #a #G #L #V #T #B #A #_ #_ #W #U #H destruct
137 | #a #G #L #V #T #B #A #_ #_ #W #U #H destruct
138 | #G #L #V #T #B #A #_ #_ #W #U #H destruct
139 | #G #L #V #T #A #HV #HT #W #U #H destruct /2 width=1 by conj/
143 lemma aaa_inv_cast: ∀G,L,W,T,A. ⦃G, L⦄ ⊢ ⓝW. T ⁝ A →
144 ⦃G, L⦄ ⊢ W ⁝ A ∧ ⦃G, L⦄ ⊢ T ⁝ A.
145 /2 width=3 by aaa_inv_cast_aux/ qed-.