1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/xoa/ex_5_3.ma".
16 include "ground/xoa/ex_6_4.ma".
17 include "basic_2A/notation/relations/lrsubeqd_5.ma".
18 include "basic_2A/static/lsubr.ma".
19 include "basic_2A/static/da.ma".
21 (* LOCAL ENVIRONMENT REFINEMENT FOR DEGREE ASSIGNMENT ***********************)
23 inductive lsubd (h) (g) (G): relation lenv ≝
24 | lsubd_atom: lsubd h g G (⋆) (⋆)
25 | lsubd_pair: ∀I,L1,L2,V. lsubd h g G L1 L2 →
26 lsubd h g G (L1.ⓑ{I}V) (L2.ⓑ{I}V)
27 | lsubd_beta: ∀L1,L2,W,V,d. ⦃G, L1⦄ ⊢ V ▪[h, g] d+1 → ⦃G, L2⦄ ⊢ W ▪[h, g] d →
28 lsubd h g G L1 L2 → lsubd h g G (L1.ⓓⓝW.V) (L2.ⓛW)
32 "local environment refinement (degree assignment)"
33 'LRSubEqD h g G L1 L2 = (lsubd h g G L1 L2).
35 (* Basic forward lemmas *****************************************************)
37 lemma lsubd_fwd_lsubr: ∀h,g,G,L1,L2. G ⊢ L1 ⫃▪[h, g] L2 → L1 ⫃ L2.
38 #h #g #G #L1 #L2 #H elim H -L1 -L2 /2 width=1 by lsubr_pair, lsubr_beta/
41 (* Basic inversion lemmas ***************************************************)
43 fact lsubd_inv_atom1_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⫃▪[h, g] L2 → L1 = ⋆ → L2 = ⋆.
44 #h #g #G #L1 #L2 * -L1 -L2
46 | #I #L1 #L2 #V #_ #H destruct
47 | #L1 #L2 #W #V #d #_ #_ #_ #H destruct
51 lemma lsubd_inv_atom1: ∀h,g,G,L2. G ⊢ ⋆ ⫃▪[h, g] L2 → L2 = ⋆.
52 /2 width=6 by lsubd_inv_atom1_aux/ qed-.
54 fact lsubd_inv_pair1_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⫃▪[h, g] L2 →
55 ∀I,K1,X. L1 = K1.ⓑ{I}X →
56 (∃∃K2. G ⊢ K1 ⫃▪[h, g] K2 & L2 = K2.ⓑ{I}X) ∨
57 ∃∃K2,W,V,d. ⦃G, K1⦄ ⊢ V ▪[h, g] d+1 & ⦃G, K2⦄ ⊢ W ▪[h, g] d &
59 I = Abbr & L2 = K2.ⓛW & X = ⓝW.V.
60 #h #g #G #L1 #L2 * -L1 -L2
61 [ #J #K1 #X #H destruct
62 | #I #L1 #L2 #V #HL12 #J #K1 #X #H destruct /3 width=3 by ex2_intro, or_introl/
63 | #L1 #L2 #W #V #d #HV #HW #HL12 #J #K1 #X #H destruct /3 width=9 by ex6_4_intro, or_intror/
67 lemma lsubd_inv_pair1: ∀h,g,I,G,K1,L2,X. G ⊢ K1.ⓑ{I}X ⫃▪[h, g] L2 →
68 (∃∃K2. G ⊢ K1 ⫃▪[h, g] K2 & L2 = K2.ⓑ{I}X) ∨
69 ∃∃K2,W,V,d. ⦃G, K1⦄ ⊢ V ▪[h, g] d+1 & ⦃G, K2⦄ ⊢ W ▪[h, g] d &
71 I = Abbr & L2 = K2.ⓛW & X = ⓝW.V.
72 /2 width=3 by lsubd_inv_pair1_aux/ qed-.
74 fact lsubd_inv_atom2_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⫃▪[h, g] L2 → L2 = ⋆ → L1 = ⋆.
75 #h #g #G #L1 #L2 * -L1 -L2
77 | #I #L1 #L2 #V #_ #H destruct
78 | #L1 #L2 #W #V #d #_ #_ #_ #H destruct
82 lemma lsubd_inv_atom2: ∀h,g,G,L1. G ⊢ L1 ⫃▪[h, g] ⋆ → L1 = ⋆.
83 /2 width=6 by lsubd_inv_atom2_aux/ qed-.
85 fact lsubd_inv_pair2_aux: ∀h,g,G,L1,L2. G ⊢ L1 ⫃▪[h, g] L2 →
86 ∀I,K2,W. L2 = K2.ⓑ{I}W →
87 (∃∃K1. G ⊢ K1 ⫃▪[h, g] K2 & L1 = K1.ⓑ{I}W) ∨
88 ∃∃K1,V,d. ⦃G, K1⦄ ⊢ V ▪[h, g] d+1 & ⦃G, K2⦄ ⊢ W ▪[h, g] d &
89 G ⊢ K1 ⫃▪[h, g] K2 & I = Abst & L1 = K1. ⓓⓝW.V.
90 #h #g #G #L1 #L2 * -L1 -L2
91 [ #J #K2 #U #H destruct
92 | #I #L1 #L2 #V #HL12 #J #K2 #U #H destruct /3 width=3 by ex2_intro, or_introl/
93 | #L1 #L2 #W #V #d #HV #HW #HL12 #J #K2 #U #H destruct /3 width=7 by ex5_3_intro, or_intror/
97 lemma lsubd_inv_pair2: ∀h,g,I,G,L1,K2,W. G ⊢ L1 ⫃▪[h, g] K2.ⓑ{I}W →
98 (∃∃K1. G ⊢ K1 ⫃▪[h, g] K2 & L1 = K1.ⓑ{I}W) ∨
99 ∃∃K1,V,d. ⦃G, K1⦄ ⊢ V ▪[h, g] d+1 & ⦃G, K2⦄ ⊢ W ▪[h, g] d &
100 G ⊢ K1 ⫃▪[h, g] K2 & I = Abst & L1 = K1. ⓓⓝW.V.
101 /2 width=3 by lsubd_inv_pair2_aux/ qed-.
103 (* Basic properties *********************************************************)
105 lemma lsubd_refl: ∀h,g,G,L. G ⊢ L ⫃▪[h, g] L.
106 #h #g #G #L elim L -L /2 width=1 by lsubd_pair/
109 (* Note: the constant 0 cannot be generalized *)
110 lemma lsubd_drop_O1_conf: ∀h,g,G,L1,L2. G ⊢ L1 ⫃▪[h, g] L2 →
111 ∀K1,s,m. ⬇[s, 0, m] L1 ≡ K1 →
112 ∃∃K2. G ⊢ K1 ⫃▪[h, g] K2 & ⬇[s, 0, m] L2 ≡ K2.
113 #h #g #G #L1 #L2 #H elim H -L1 -L2
114 [ /2 width=3 by ex2_intro/
115 | #I #L1 #L2 #V #_ #IHL12 #K1 #s #m #H
116 elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1
118 elim (IHL12 L1 s 0) -IHL12 // #X #HL12 #H
119 <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubd_pair, drop_pair, ex2_intro/
120 | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/
122 | #L1 #L2 #W #V #d #HV #HW #_ #IHL12 #K1 #s #m #H
123 elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK1
125 elim (IHL12 L1 s 0) -IHL12 // #X #HL12 #H
126 <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubd_beta, drop_pair, ex2_intro/
127 | elim (IHL12 … HLK1) -L1 /3 width=3 by drop_drop_lt, ex2_intro/
132 (* Note: the constant 0 cannot be generalized *)
133 lemma lsubd_drop_O1_trans: ∀h,g,G,L1,L2. G ⊢ L1 ⫃▪[h, g] L2 →
134 ∀K2,s,m. ⬇[s, 0, m] L2 ≡ K2 →
135 ∃∃K1. G ⊢ K1 ⫃▪[h, g] K2 & ⬇[s, 0, m] L1 ≡ K1.
136 #h #g #G #L1 #L2 #H elim H -L1 -L2
137 [ /2 width=3 by ex2_intro/
138 | #I #L1 #L2 #V #_ #IHL12 #K2 #s #m #H
139 elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2
141 elim (IHL12 L2 s 0) -IHL12 // #X #HL12 #H
142 <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubd_pair, drop_pair, ex2_intro/
143 | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/
145 | #L1 #L2 #W #V #d #HV #HW #_ #IHL12 #K2 #s #m #H
146 elim (drop_inv_O1_pair1 … H) -H * #Hm #HLK2
148 elim (IHL12 L2 s 0) -IHL12 // #X #HL12 #H
149 <(drop_inv_O2 … H) in HL12; -H /3 width=3 by lsubd_beta, drop_pair, ex2_intro/
150 | elim (IHL12 … HLK2) -L2 /3 width=3 by drop_drop_lt, ex2_intro/