1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/arith/ynat_succ.ma".
16 include "ground/arith/ynat_le.ma".
18 (* ORDER FOR NON-NEGATIVE INTEGERS WITH INFINITY ****************************)
20 (* Constructions with ysucc *************************************************)
23 lemma yle_succ_bi (x) (y): x ≤ y → ↑x ≤ ↑y.
25 /3 width=1 by yle_inj, yle_inf, nle_succ_bi/
29 lemma yle_succ_dx (x) (y): x ≤ y → x ≤ ↑y.
31 /3 width=1 by yle_inj, yle_inf, nle_succ_dx/
35 lemma yle_succ_dx_refl (x): x ≤ ↑x.
36 /2 width=1 by yle_succ_dx/ qed.
38 (* Inversions with ysucc ****************************************************)
41 lemma yle_inv_succ_bi (x) (y): ↑x ≤ ↑y → x ≤ y.
42 #x #y @(ynat_split_nat_inf … y) -y //
44 elim (yle_inv_inj_dx … H) -H #o #Hmn #H
45 elim (eq_inv_ysucc_inj … H) -H #m #H1 #H2 destruct
46 /3 width=1 by yle_inj, nle_inv_succ_bi/