1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/arith/ynat_pred_succ.ma".
16 include "ground/arith/ynat_plus.ma".
17 include "ground/arith/ynat_lt_pred_succ.ma".
19 (* STRICT ORDER FOR NON-NEGATIVE INTEGERS WITH INFINITY *********************)
21 (* Inversions with yplus and ypred ******************************************)
23 (*** yplus_inv_succ_lt_dx *)
24 lemma eq_inv_succ_yplus_lt_dx (z) (x) (y): 𝟎 < y → ↑z = x + y → z = x + ↓y.
25 #z #x #y #Hy >(ylt_des_gen_dx … Hy) -Hy
26 <yplus_succ_dx <ypred_succ
27 /2 width=1 by eq_inv_ysucc_bi/
30 (*** yplus_inv_succ_lt_sn *)
31 lemma eq_inv_succ_yplus_lt_sn (z) (x) (y): 𝟎 < x → ↑z = x + y → z = ↓x + y.
32 /2 width=1 by eq_inv_succ_yplus_lt_dx/ qed-.
34 (* Destructions with yplus and ypred ****************************************)
37 lemma yplus_pred_sn (x) (y): 𝟎 < x → ↓(x+y) = ↓x + y.
38 #x #y #Hx >(ylt_des_gen_dx … Hx) -Hx
39 <yplus_succ_sn <ypred_succ <ypred_succ //
43 lemma yplus_pred_dx (x) (y): 𝟎 < y → x + ↓y = ↓(x+y).
44 /2 width=1 by yplus_pred_sn/ qed-.