1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/arith/ynat_succ.ma".
16 include "ground/arith/ynat_lt.ma".
18 (* STRICT ORDER FOR NON-NEGATIVE INTEGERS WITH INFINITY *********************)
20 (* Constructions with ysucc *************************************************)
23 lemma ylt_zero_succ (y): 𝟎 < ↑y.
24 #y @(ynat_split_nat_inf … y) -y
25 /2 width=1 by ylt_inj/
29 lemma ylt_succ_bi (x) (y): x < y → ↑x < ↑y.
31 /3 width=1 by ylt_inj, ylt_inf, nlt_succ_bi/
35 lemma ylt_succ_inf (x): x < ∞ → ↑x < ∞.
36 #x @(ynat_split_nat_inf … x) -x //
39 (*** ylt_succ2_refl *)
40 lemma ylt_succ_dx_refl (x) (y): x < y → x < ↑x.
42 elim (ylt_des_gen_sn … H) -y #n #H destruct
43 /2 width=1 by ylt_inj/
46 (* Inversions with ysucc ****************************************************)
48 lemma ylt_inv_succ_inf (x): ↑x < ∞ → x < ∞.
50 elim (ylt_des_gen_sn … H) -H #m0 #H
51 elim (eq_inv_ysucc_inj … H) -H #m #H1 #H2 destruct //
55 lemma ylt_inv_succ_bi (x) (y): ↑x < ↑y → x < y.
56 #x #y @(ynat_split_nat_inf … y) -y
58 elim (ylt_inv_inj_dx … H) -H #m0 #Hmn #H
59 elim (eq_inv_ysucc_inj … H) -H #m #H1 #H2 destruct
60 /3 width=1 by ylt_inj, nlt_inv_succ_bi/
61 | /2 width=1 by ylt_inv_succ_inf/