1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground_2/notation/relations/isuniform_1.ma".
16 include "ground_2/relocation/trace_isid.ma".
18 (* RELOCATION TRACE *********************************************************)
20 inductive isun: predicate trace ≝
21 | isun_id : ∀t. 𝐈⦃t⦄ → isun t
22 | isun_false: ∀t. isun t → isun (Ⓕ@t)
25 interpretation "test for uniformity (trace)"
26 'IsUniform t = (isun t).
28 (* Basic inversion lennas ***************************************************)
30 fact isun_inv_true_aux: ∀t. 𝐔⦃t⦄ → ∀u. t = Ⓣ@u → 𝐈⦃u⦄.
32 [ #t #Ht #u #H destruct /2 width=1 by isid_inv_true/
33 | #t #_ #u #H destruct
37 lemma isun_inv_true: ∀t. 𝐔⦃Ⓣ@t⦄ → 𝐈⦃t⦄.
38 /2 width=3 by isun_inv_true_aux/ qed-.
40 fact isun_inv_false_aux: ∀t. 𝐔⦃t⦄ → ∀u. t = Ⓕ@u → 𝐔⦃u⦄.
42 [ #t #Ht #u #H destruct elim (isid_inv_false … Ht)
43 | #t #Ht #u #H destruct //
47 lemma isun_inv_false: ∀t. 𝐔⦃Ⓕ@t⦄ → 𝐔⦃t⦄.
48 /2 width=3 by isun_inv_false_aux/ qed-.