1 include "ground/relocation/tr_uni_pap.ma".
2 include "ground/relocation/tr_compose_pap.ma".
3 include "ground/relocation/tr_pap_eq.ma".
4 include "ground/notation/functions/atsection_2.ma".
5 include "ground/arith/nat_lt.ma".
6 include "ground/arith/nat_plus_rplus.ma".
7 include "ground/arith/nat_pred_succ.ma".
9 lemma nlt_npsucc_bi (n1) (n2):
10 n1 < n2 → npsucc n1 < npsucc n2.
11 #n1 #n2 #Hn elim Hn -n2 //
12 #n2 #_ #IH /2 width=1 by plt_succ_dx_trans/
15 definition tr_nap (f) (l:nat): nat ≝
19 "functional non-negative application (total relocation maps)"
20 'AtSection f l = (tr_nap f l).
22 lemma tr_nap_unfold (f) (l):
26 lemma tr_pap_succ_nap (f) (l):
30 lemma tr_compose_nap (f2) (f1) (l):
31 f2@§❨f1@§❨l❩❩ = (f2∘f1)@§❨l❩.
33 <tr_nap_unfold <tr_nap_unfold <tr_nap_unfold
34 <tr_compose_pap <npsucc_pred //
37 lemma tr_uni_nap (n) (m):
41 <tr_uni_pap <nrplus_npsucc_sn //
44 lemma tr_nap_push (f):
45 ∀l. ↑(f@§❨l❩) = (⫯f)@§❨↑l❩.
47 <tr_nap_unfold <tr_nap_unfold
48 <tr_pap_push <pnpred_psucc //
51 lemma tr_nap_pushs_lt (f) (n) (m):
52 m < n → m = (⫯*[n]f)@§❨m❩.
54 <tr_nap_unfold <tr_pap_pushs_le
55 /2 width=1 by nlt_npsucc_bi/
58 theorem tr_nap_eq_repl (i):
59 stream_eq_repl … (λf1,f2. f1@§❨i❩ = f2@§❨i❩).
61 <tr_nap_unfold <tr_nap_unfold
62 /3 width=1 by tr_pap_eq_repl, eq_f/