1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/relocation/pstream_tls.ma".
16 include "ground/relocation/pstream_istot.ma".
17 include "ground/relocation/rtmap_after.ma".
19 (* Properties on after (specific) *********************************************)
21 lemma after_O2: ∀f2,f1,f. f2 ⊚ f1 ≘ f →
23 #f2 #f1 #f #Hf #p elim p -p
24 /2 width=7 by gr_after_refl, gr_after_next/
27 lemma after_S2: ∀f2,f1,f,p1,p. f2 ⊚ p1⨮f1 ≘ p⨮f →
28 ∀p2. p2⨮f2 ⊚ ↑p1⨮f1 ≘ (p+p2)⨮f.
29 #f2 #f1 #f #p1 #p #Hf #p2 elim p2 -p2
30 /2 width=7 by gr_after_next, gr_after_push/
33 lemma after_apply: ∀p1,f2,f1,f.
34 (⫰*[ninj p1] f2) ⊚ f1 ≘ f → f2 ⊚ p1⨮f1 ≘ f2@❨p1❩⨮f.
36 [ * /2 width=1 by after_O2/
37 | #p1 #IH * #p2 #f2 >nsucc_inj <stream_tls_swap
38 /3 width=1 by after_S2/
42 corec lemma after_total_aux: ∀f2,f1,f. f2 ∘ f1 = f → f2 ⊚ f1 ≘ f.
43 * #p2 #f2 * #p1 #f1 * #p #f cases p2 -p2
45 [ #H cases (compose_inv_O2 … H) -H /3 width=7 by gr_after_refl, eq_f2/
46 | #p1 #H cases (compose_inv_S2 … H) -H * -p /3 width=7 by gr_after_push/
48 | #p2 >gr_next_unfold #H cases (compose_inv_S1 … H) -H * -p >gr_next_unfold
49 /3 width=5 by gr_after_next/
53 theorem after_total: ∀f1,f2. f2 ⊚ f1 ≘ f2 ∘ f1.
54 /2 width=1 by after_total_aux/ qed.
56 (* Inversion lemmas on after (specific) ***************************************)
58 lemma after_inv_xpx: ∀f2,g2,f,p2,p. p2⨮f2 ⊚ g2 ≘ p⨮f → ∀f1. ⫯f1 = g2 →
60 #f2 #g2 #f #p2 elim p2 -p2
61 [ #p #Hf #f1 #H2 elim (gr_after_inv_push_bi … Hf … H2) -g2 [|*: // ]
62 #g #Hf #H elim (push_inv_seq_dx … H) -H destruct /2 width=1 by conj/
63 | #p2 #IH #p #Hf #f1 #H2 elim (gr_after_inv_next_sn … Hf) -Hf [|*: // ]
64 #g1 #Hg #H1 elim (next_inv_seq_dx … H1) -H1
65 #x #Hx #H destruct elim (IH … Hg) [|*: // ] -IH -Hg
66 #H destruct /2 width=1 by conj/
70 lemma after_inv_xnx: ∀f2,g2,f,p2,p. p2⨮f2 ⊚ g2 ≘ p⨮f → ∀f1. ↑f1 = g2 →
71 ∃∃q. f2 ⊚ f1 ≘ q⨮f & q+p2 = p.
72 #f2 #g2 #f #p2 elim p2 -p2
73 [ #p #Hf #f1 #H2 elim (gr_after_inv_push_next … Hf … H2) -g2 [|*: // ]
74 #g #Hf #H elim (next_inv_seq_dx … H) -H
75 #x #Hx #Hg destruct /2 width=3 by ex2_intro/
76 | #p2 #IH #p #Hf #f1 #H2 elim (gr_after_inv_next_sn … Hf) -Hf [|*: // ]
77 #g #Hg #H elim (next_inv_seq_dx … H) -H
78 #x #Hx #H destruct elim (IH … Hg) -IH -Hg [|*: // ]
79 #m #Hf #Hm destruct /2 width=3 by ex2_intro/
83 lemma after_inv_const: ∀f2,f1,f,p1,p.
84 p⨮f2 ⊚ p1⨮f1 ≘ p⨮f → f2 ⊚ f1 ≘ f ∧ 𝟏 = p1.
85 #f2 #f1 #f #p1 #p elim p -p
86 [ #H elim (gr_after_inv_push_sn_push … H) -H [|*: // ]
87 #g2 #Hf #H elim (push_inv_seq_dx … H) -H /2 width=1 by conj/
88 | #p #IH #H lapply (gr_after_inv_next_sn_next … H ????) -H /2 width=5 by/
92 lemma after_inv_total: ∀f2,f1,f. f2 ⊚ f1 ≘ f → f2 ∘ f1 ≡ f.
93 /2 width=4 by gr_after_mono/ qed-.
95 (* Forward lemmas on after (specific) *****************************************)
97 lemma after_fwd_hd: ∀f2,f1,f,p1,p. f2 ⊚ p1⨮f1 ≘ p⨮f → f2@❨p1❩ = p.
98 #f2 #f1 #f #p1 #p #H lapply (gr_after_des_pat ? p1 (𝟏) … H) -H [4:|*: // ]
99 /3 width=2 by at_inv_O1, sym_eq/
102 lemma after_fwd_tls: ∀f,f1,p1,f2,p2,p. p2⨮f2 ⊚ p1⨮f1 ≘ p⨮f →
103 (⫰*[↓p1]f2) ⊚ f1 ≘ f.
104 #f #f1 #p1 elim p1 -p1
105 [ #f2 #p2 #p #H elim (after_inv_xpx … H) -H //
106 | #p1 #IH * #q2 #f2 #p2 #p #H elim (after_inv_xnx … H) -H [|*: // ]
107 #x #Hx #H destruct /2 width=3 by/
111 lemma after_inv_apply: ∀f2,f1,f,p2,p1,p. p2⨮f2 ⊚ p1⨮f1 ≘ p⨮f →
112 (p2⨮f2)@❨p1❩ = p ∧ (⫰*[↓p1]f2) ⊚ f1 ≘ f.
113 /3 width=3 by after_fwd_tls, after_fwd_hd, conj/ qed-.
115 (* Properties on apply ******************************************************)
117 lemma compose_apply (f2) (f1) (i): f2@❨f1@❨i❩❩ = (f2∘f1)@❨i❩.
118 /4 width=6 by gr_after_des_pat, at_inv_total, sym_eq/ qed.