1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was automatically generated: do not edit *********************)
17 include "ground_1/blt/defs.ma".
20 \forall (x: nat).(\forall (y: nat).((lt y x) \to (eq bool (blt y x) true)))
22 \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((lt y n) \to
23 (eq bool (blt y n) true)))) (\lambda (y: nat).(\lambda (H: (lt y O)).(let H0
24 \def (match H with [le_n \Rightarrow (\lambda (H0: (eq nat (S y) O)).(let H1
25 \def (eq_ind nat (S y) (\lambda (e: nat).(match e with [O \Rightarrow False |
26 (S _) \Rightarrow True])) I O H0) in (False_ind (eq bool (blt y O) true)
27 H1))) | (le_S m H0) \Rightarrow (\lambda (H1: (eq nat (S m) O)).((let H2 \def
28 (eq_ind nat (S m) (\lambda (e: nat).(match e with [O \Rightarrow False | (S
29 _) \Rightarrow True])) I O H1) in (False_ind ((le (S y) m) \to (eq bool (blt
30 y O) true)) H2)) H0))]) in (H0 (refl_equal nat O))))) (\lambda (n:
31 nat).(\lambda (H: ((\forall (y: nat).((lt y n) \to (eq bool (blt y n)
32 true))))).(\lambda (y: nat).(nat_ind (\lambda (n0: nat).((lt n0 (S n)) \to
33 (eq bool (blt n0 (S n)) true))) (\lambda (_: (lt O (S n))).(refl_equal bool
34 true)) (\lambda (n0: nat).(\lambda (_: (((lt n0 (S n)) \to (eq bool (match n0
35 with [O \Rightarrow true | (S m) \Rightarrow (blt m n)]) true)))).(\lambda
36 (H1: (lt (S n0) (S n))).(H n0 (le_S_n (S n0) n H1))))) y)))) x).
39 \forall (x: nat).(\forall (y: nat).((le x y) \to (eq bool (blt y x) false)))
41 \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((le n y) \to
42 (eq bool (blt y n) false)))) (\lambda (y: nat).(\lambda (_: (le O
43 y)).(refl_equal bool false))) (\lambda (n: nat).(\lambda (H: ((\forall (y:
44 nat).((le n y) \to (eq bool (blt y n) false))))).(\lambda (y: nat).(nat_ind
45 (\lambda (n0: nat).((le (S n) n0) \to (eq bool (blt n0 (S n)) false)))
46 (\lambda (H0: (le (S n) O)).(let H1 \def (match H0 with [le_n \Rightarrow
47 (\lambda (H1: (eq nat (S n) O)).(let H2 \def (eq_ind nat (S n) (\lambda (e:
48 nat).(match e with [O \Rightarrow False | (S _) \Rightarrow True])) I O H1)
49 in (False_ind (eq bool (blt O (S n)) false) H2))) | (le_S m H1) \Rightarrow
50 (\lambda (H2: (eq nat (S m) O)).((let H3 \def (eq_ind nat (S m) (\lambda (e:
51 nat).(match e with [O \Rightarrow False | (S _) \Rightarrow True])) I O H2)
52 in (False_ind ((le (S n) m) \to (eq bool (blt O (S n)) false)) H3)) H1))]) in
53 (H1 (refl_equal nat O)))) (\lambda (n0: nat).(\lambda (_: (((le (S n) n0) \to
54 (eq bool (blt n0 (S n)) false)))).(\lambda (H1: (le (S n) (S n0))).(H n0
55 (le_S_n n n0 H1))))) y)))) x).
58 \forall (x: nat).(\forall (y: nat).((eq bool (blt y x) true) \to (lt y x)))
60 \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((eq bool (blt
61 y n) true) \to (lt y n)))) (\lambda (y: nat).(\lambda (H: (eq bool (blt y O)
62 true)).(let H0 \def (match H with [refl_equal \Rightarrow (\lambda (H0: (eq
63 bool (blt y O) true)).(let H1 \def (eq_ind bool (blt y O) (\lambda (e:
64 bool).(match e with [true \Rightarrow False | false \Rightarrow True])) I
65 true H0) in (False_ind (lt y O) H1)))]) in (H0 (refl_equal bool true)))))
66 (\lambda (n: nat).(\lambda (H: ((\forall (y: nat).((eq bool (blt y n) true)
67 \to (lt y n))))).(\lambda (y: nat).(nat_ind (\lambda (n0: nat).((eq bool (blt
68 n0 (S n)) true) \to (lt n0 (S n)))) (\lambda (_: (eq bool true true)).(le_S_n
69 (S O) (S n) (le_n_S (S O) (S n) (le_n_S O n (le_O_n n))))) (\lambda (n0:
70 nat).(\lambda (_: (((eq bool (match n0 with [O \Rightarrow true | (S m)
71 \Rightarrow (blt m n)]) true) \to (lt n0 (S n))))).(\lambda (H1: (eq bool
72 (blt n0 n) true)).(lt_n_S n0 n (H n0 H1))))) y)))) x).
75 \forall (x: nat).(\forall (y: nat).((eq bool (blt y x) false) \to (le x y)))
77 \lambda (x: nat).(nat_ind (\lambda (n: nat).(\forall (y: nat).((eq bool (blt
78 y n) false) \to (le n y)))) (\lambda (y: nat).(\lambda (_: (eq bool (blt y O)
79 false)).(le_O_n y))) (\lambda (n: nat).(\lambda (H: ((\forall (y: nat).((eq
80 bool (blt y n) false) \to (le n y))))).(\lambda (y: nat).(nat_ind (\lambda
81 (n0: nat).((eq bool (blt n0 (S n)) false) \to (le (S n) n0))) (\lambda (H0:
82 (eq bool (blt O (S n)) false)).(let H1 \def (match H0 with [refl_equal
83 \Rightarrow (\lambda (H1: (eq bool (blt O (S n)) false)).(let H2 \def (eq_ind
84 bool (blt O (S n)) (\lambda (e: bool).(match e with [true \Rightarrow True |
85 false \Rightarrow False])) I false H1) in (False_ind (le (S n) O) H2)))]) in
86 (H1 (refl_equal bool false)))) (\lambda (n0: nat).(\lambda (_: (((eq bool
87 (blt n0 (S n)) false) \to (le (S n) n0)))).(\lambda (H1: (eq bool (blt (S n0)
88 (S n)) false)).(le_S_n (S n) (S n0) (le_n_S (S n) (S n0) (le_n_S n n0 (H n0