1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "arithmetics/nat.ma".
17 (* INFINITARY NATURAL NUMBERS ***********************************************)
19 (* the type of infinitary natural numbers *)
20 coinductive ynat: Type[0] ≝
25 interpretation "ynat successor" 'Successor m = (YS m).
27 (* the coercion of nat to ynat *)
28 let rec ynat_of_nat n ≝ match n with
30 | S m ⇒ YS (ynat_of_nat m)
36 let corec Y : ynat ≝ ⫯Y.
38 interpretation "ynat infinity" 'Infinity = Y.
40 (* destructing identity on ynat *)
41 definition yid: ynat → ynat ≝ λm. match m with
46 (* Properties ***************************************************************)
48 fact yid_rew: ∀n. yid n = n.
52 <(yid_rew ∞) in ⊢ (???%); //