]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/ground_2/etc/ynat_old/ynat.etc
updated probe and matitadep
[helm.git] / matita / matita / contribs / lambdadelta / ground_2 / etc / ynat_old / ynat.etc
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "arithmetics/nat.ma".
16
17 (* INFINITARY NATURAL NUMBERS ***********************************************)
18
19 (* the type of infinitary natural numbers *)
20 coinductive ynat: Type[0] ≝
21 | YO: ynat
22 | YS: ynat → ynat
23 .
24
25 interpretation "ynat successor" 'Successor m = (YS m).
26
27 (* the coercion of nat to ynat *)
28 let rec ynat_of_nat n ≝ match n with
29 [ O   ⇒ YO
30 | S m ⇒ YS (ynat_of_nat m)
31 ].
32
33 coercion ynat_of_nat.
34
35 (* the infinity *)
36 let corec Y : ynat ≝ ⫯Y.
37
38 interpretation "ynat infinity" 'Infinity = Y.
39
40 (* destructing identity on ynat *)
41 definition yid: ynat → ynat ≝ λm. match m with
42 [ YO   ⇒ 0
43 | YS n ⇒ ⫯n
44 ].
45
46 (* Properties ***************************************************************)
47
48 fact yid_rew: ∀n. yid n = n.
49 * // qed-.
50
51 lemma Y_rew: ⫯∞ = ∞.
52 <(yid_rew ∞) in ⊢ (???%); //
53 qed.