1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "basics/star1.ma".
16 include "ground_2/xoa/xoa_props.ma".
18 (* PROPERTIES OF RELATIONS **************************************************)
20 definition Decidable: Prop → Prop ≝ λR. R ∨ (R → ⊥).
22 definition Transitive: ∀A. ∀R: relation A. Prop ≝ λA,R.
23 ∀a1,a0. R a1 a0 → ∀a2. R a0 a2 → R a1 a2.
25 definition confluent2: ∀A. ∀R1,R2: relation A. Prop ≝ λA,R1,R2.
26 ∀a0,a1. R1 a0 a1 → ∀a2. R2 a0 a2 →
27 ∃∃a. R2 a1 a & R1 a2 a.
29 definition transitive2: ∀A. ∀R1,R2: relation A. Prop ≝ λA,R1,R2.
30 ∀a1,a0. R1 a1 a0 → ∀a2. R2 a0 a2 →
31 ∃∃a. R2 a1 a & R1 a a2.
33 definition bi_confluent: ∀A,B. ∀R: bi_relation A B. Prop ≝ λA,B,R.
34 ∀a0,a1,b0,b1. R a0 b0 a1 b1 → ∀a2,b2. R a0 b0 a2 b2 →
35 ∃∃a,b. R a1 b1 a b & R a2 b2 a b.
37 definition LTC: ∀A:Type[0]. ∀B. (A→relation B) → (A→relation B) ≝
40 definition lsub_trans: ∀A,B. relation2 (A→relation B) (relation A) ≝ λA,B,R1,R2.
41 ∀L2,T1,T2. R1 L2 T1 T2 → ∀L1. R2 L1 L2 → R1 L1 T1 T2.
43 definition s_r_trans: ∀A,B. relation2 (A→relation B) (relation A) ≝ λA,B,R1,R2.
44 ∀L2,T1,T2. R1 L2 T1 T2 → ∀L1. R2 L1 L2 → LTC … R1 L1 T1 T2.
46 definition s_rs_trans: ∀A,B. relation2 (A→relation B) (relation A) ≝ λA,B,R1,R2.
47 ∀L2,T1,T2. LTC … R1 L2 T1 T2 → ∀L1. R2 L1 L2 → LTC … R1 L1 T1 T2.
49 lemma TC_strip1: ∀A,R1,R2. confluent2 A R1 R2 →
50 ∀a0,a1. TC … R1 a0 a1 → ∀a2. R2 a0 a2 →
51 ∃∃a. R2 a1 a & TC … R1 a2 a.
52 #A #R1 #R2 #HR12 #a0 #a1 #H elim H -a1
54 elim (HR12 … Ha01 … Ha02) -HR12 -a0 /3 width=3/
55 | #a #a1 #_ #Ha1 #IHa0 #a2 #Ha02
56 elim (IHa0 … Ha02) -a0 #a0 #Ha0 #Ha20
57 elim (HR12 … Ha1 … Ha0) -HR12 -a /4 width=5/
61 lemma TC_strip2: ∀A,R1,R2. confluent2 A R1 R2 →
62 ∀a0,a2. TC … R2 a0 a2 → ∀a1. R1 a0 a1 →
63 ∃∃a. TC … R2 a1 a & R1 a2 a.
64 #A #R1 #R2 #HR12 #a0 #a2 #H elim H -a2
66 elim (HR12 … Ha01 … Ha02) -HR12 -a0 /3 width=3/
67 | #a #a2 #_ #Ha2 #IHa0 #a1 #Ha01
68 elim (IHa0 … Ha01) -a0 #a0 #Ha10 #Ha0
69 elim (HR12 … Ha0 … Ha2) -HR12 -a /4 width=3/
73 lemma TC_confluent2: ∀A,R1,R2.
74 confluent2 A R1 R2 → confluent2 A (TC … R1) (TC … R2).
75 #A #R1 #R2 #HR12 #a0 #a1 #H elim H -a1
77 elim (TC_strip2 … HR12 … Ha02 … Ha01) -HR12 -a0 /3 width=3/
78 | #a #a1 #_ #Ha1 #IHa0 #a2 #Ha02
79 elim (IHa0 … Ha02) -a0 #a0 #Ha0 #Ha20
80 elim (TC_strip2 … HR12 … Ha0 … Ha1) -HR12 -a /4 width=5/
84 lemma TC_strap1: ∀A,R1,R2. transitive2 A R1 R2 →
85 ∀a1,a0. TC … R1 a1 a0 → ∀a2. R2 a0 a2 →
86 ∃∃a. R2 a1 a & TC … R1 a a2.
87 #A #R1 #R2 #HR12 #a1 #a0 #H elim H -a0
89 elim (HR12 … Ha10 … Ha02) -HR12 -a0 /3 width=3/
90 | #a #a0 #_ #Ha0 #IHa #a2 #Ha02
91 elim (HR12 … Ha0 … Ha02) -HR12 -a0 #a0 #Ha0 #Ha02
92 elim (IHa … Ha0) -a /4 width=5/
96 lemma TC_strap2: ∀A,R1,R2. transitive2 A R1 R2 →
97 ∀a0,a2. TC … R2 a0 a2 → ∀a1. R1 a1 a0 →
98 ∃∃a. TC … R2 a1 a & R1 a a2.
99 #A #R1 #R2 #HR12 #a0 #a2 #H elim H -a2
100 [ #a2 #Ha02 #a1 #Ha10
101 elim (HR12 … Ha10 … Ha02) -HR12 -a0 /3 width=3/
102 | #a #a2 #_ #Ha02 #IHa #a1 #Ha10
103 elim (IHa … Ha10) -a0 #a0 #Ha10 #Ha0
104 elim (HR12 … Ha0 … Ha02) -HR12 -a /4 width=3/
108 lemma TC_transitive2: ∀A,R1,R2.
109 transitive2 A R1 R2 → transitive2 A (TC … R1) (TC … R2).
110 #A #R1 #R2 #HR12 #a1 #a0 #H elim H -a0
111 [ #a0 #Ha10 #a2 #Ha02
112 elim (TC_strap2 … HR12 … Ha02 … Ha10) -HR12 -a0 /3 width=3/
113 | #a #a0 #_ #Ha0 #IHa #a2 #Ha02
114 elim (TC_strap2 … HR12 … Ha02 … Ha0) -HR12 -a0 #a0 #Ha0 #Ha02
115 elim (IHa … Ha0) -a /4 width=5/
119 definition NF: ∀A. relation A → relation A → predicate A ≝
120 λA,R,S,a1. ∀a2. R a1 a2 → S a2 a1.
122 definition NF_dec: ∀A. relation A → relation A → Prop ≝
123 λA,R,S. ∀a1. NF A R S a1 ∨
124 ∃∃a2. R … a1 a2 & (S a2 a1 → ⊥).
126 inductive SN (A) (R,S:relation A): predicate A ≝
127 | SN_intro: ∀a1. (∀a2. R a1 a2 → (S a2 a1 → ⊥) → SN A R S a2) → SN A R S a1
130 lemma NF_to_SN: ∀A,R,S,a. NF A R S a → SN A R S a.
132 @SN_intro #a2 #HRa12 #HSa12
133 elim HSa12 -HSa12 /2 width=1/
136 lemma SN_to_NF: ∀A,R,S. NF_dec A R S →
138 ∃∃a2. star … R a1 a2 & NF A R S a2.
139 #A #R #S #HRS #a1 #H elim H -a1
140 #a1 #_ #IHa1 elim (HRS a1) -HRS /2 width=3/
141 * #a0 #Ha10 #Ha01 elim (IHa1 … Ha10 Ha01) -IHa1 -Ha01 /3 width=3/
144 definition NF_sn: ∀A. relation A → relation A → predicate A ≝
145 λA,R,S,a2. ∀a1. R a1 a2 → S a2 a1.
147 inductive SN_sn (A) (R,S:relation A): predicate A ≝
148 | SN_sn_intro: ∀a2. (∀a1. R a1 a2 → (S a2 a1 → ⊥) → SN_sn A R S a1) → SN_sn A R S a2
151 lemma NF_to_SN_sn: ∀A,R,S,a. NF_sn A R S a → SN_sn A R S a.
153 @SN_sn_intro #a1 #HRa12 #HSa12
154 elim HSa12 -HSa12 /2 width=1/
157 lemma TC_lsub_trans: ∀A,B,R,S. lsub_trans A B R S → lsub_trans A B (LTC … R) S.
158 #A #B #R #S #HRS #L2 #T1 #T2 #H elim H -T2 [ /3 width=3/ ]
159 #T #T2 #_ #HT2 #IHT1 #L1 #HL12
160 lapply (HRS … HT2 … HL12) -HRS -HT2 /3 width=3/
163 lemma s_r_trans_TC1: ∀A,B,R,S. s_r_trans A B R S → s_rs_trans A B R S.
164 #A #B #R #S #HRS #L2 #T1 #T2 #H elim H -T2 [ /3 width=3/ ]
165 #T #T2 #_ #HT2 #IHT1 #L1 #HL12
166 lapply (HRS … HT2 … HL12) -HRS -HT2 /3 width=3/
169 lemma s_r_trans_TC2: ∀A,B,R,S. s_rs_trans A B R S → s_r_trans A B R (TC … S).
170 #A #B #R #S #HRS #L2 #T1 #T2 #HT12 #L1 #H @(TC_ind_dx … L1 H) -L1 /2 width=3/ /3 width=3/
173 (* relations on unboxed pairs ***********************************************)
175 lemma bi_TC_strip: ∀A,B,R. bi_confluent A B R →
176 ∀a0,a1,b0,b1. R a0 b0 a1 b1 → ∀a2,b2. bi_TC … R a0 b0 a2 b2 →
177 ∃∃a,b. bi_TC … R a1 b1 a b & R a2 b2 a b.
178 #A #B #R #HR #a0 #a1 #b0 #b1 #H01 #a2 #b2 #H elim H -a2 -b2
180 elim (HR … H01 … H02) -HR -a0 -b0 /3 width=4/
181 | #a2 #b2 #a3 #b3 #_ #H23 * #a #b #H1 #H2
182 elim (HR … H23 … H2) -HR -a0 -b0 -a2 -b2 /3 width=4/
186 lemma bi_TC_confluent: ∀A,B,R. bi_confluent A B R →
187 bi_confluent A B (bi_TC … R).
188 #A #B #R #HR #a0 #a1 #b0 #b1 #H elim H -a1 -b1
189 [ #a1 #b1 #H01 #a2 #b2 #H02
190 elim (bi_TC_strip … HR … H01 … H02) -a0 -b0 /3 width=4/
191 | #a1 #b1 #a3 #b3 #_ #H13 #IH #a2 #b2 #H02
192 elim (IH … H02) -a0 -b0 #a0 #b0 #H10 #H20
193 elim (bi_TC_strip … HR … H13 … H10) -a1 -b1 /3 width=7/
197 lemma bi_TC_decomp_r: ∀A,B. ∀R:bi_relation A B.
198 ∀a1,a2,b1,b2. bi_TC … R a1 b1 a2 b2 →
200 ∃∃a,b. bi_TC … R a1 b1 a b & R a b a2 b2.
201 #A #B #R #a1 #a2 #b1 #b2 * -a2 -b2 /2 width=1/ /3 width=4/
204 lemma bi_TC_decomp_l: ∀A,B. ∀R:bi_relation A B.
205 ∀a1,a2,b1,b2. bi_TC … R a1 b1 a2 b2 →
207 ∃∃a,b. R a1 b1 a b & bi_TC … R a b a2 b2.
208 #A #B #R #a1 #a2 #b1 #b2 #H @(bi_TC_ind_dx … a1 b1 H) -a1 -b1
210 | #a1 #a #b1 #b #Hab1 #Hab2 #_ /3 width=4/
214 (* relations on unboxed triples *********************************************)
216 definition tri_RC: ∀A,B,C. tri_relation A B C → tri_relation A B C ≝
217 λA,B,C,R,a1,b1,c1,a2,b2,c2. R … a1 b1 c1 a2 b2 c2 ∨
218 ∧∧ a1 = a2 & b1 = b2 & c1 = c2.
220 lemma tri_RC_reflexive: ∀A,B,C,R. tri_reflexive A B C (tri_RC … R).
223 definition tri_star: ∀A,B,C,R. tri_relation A B C ≝
224 λA,B,C,R. tri_RC A B C (tri_TC … R).
226 lemma tri_star_tri_reflexive: ∀A,B,C,R. tri_reflexive A B C (tri_star … R).
229 lemma tri_TC_to_tri_star: ∀A,B,C,R,a1,b1,c1,a2,b2,c2.
230 tri_TC A B C R a1 b1 c1 a2 b2 c2 →
231 tri_star A B C R a1 b1 c1 a2 b2 c2.
234 lemma tri_R_to_tri_star: ∀A,B,C,R,a1,b1,c1,a2,b2,c2.
235 R a1 b1 c1 a2 b2 c2 → tri_star A B C R a1 b1 c1 a2 b2 c2.
238 lemma tri_star_strap1: ∀A,B,C,R,a1,a,a2,b1,b,b2,c1,c,c2.
239 tri_star A B C R a1 b1 c1 a b c →
240 R a b c a2 b2 c2 → tri_star A B C R a1 b1 c1 a2 b2 c2.
241 #A #B #C #R #a1 #a #a2 #b1 #b #b2 #c1 #c #c2 *
243 | * #H1 #H2 #H3 destruct /2 width=1/
247 lemma tri_star_strap2: ∀A,B,C,R,a1,a,a2,b1,b,b2,c1,c,c2. R a1 b1 c1 a b c →
248 tri_star A B C R a b c a2 b2 c2 →
249 tri_star A B C R a1 b1 c1 a2 b2 c2.
250 #A #B #C #R #a1 #a #a2 #b1 #b #b2 #c1 #c #c2 #H *
252 | * #H1 #H2 #H3 destruct /2 width=1/
256 lemma tri_star_to_tri_TC_to_tri_TC: ∀A,B,C,R,a1,a,a2,b1,b,b2,c1,c,c2.
257 tri_star A B C R a1 b1 c1 a b c →
258 tri_TC A B C R a b c a2 b2 c2 →
259 tri_TC A B C R a1 b1 c1 a2 b2 c2.
260 #A #B #C #R #a1 #a #a2 #b1 #b #b2 #c1 #c #c2 *
262 | * #H1 #H2 #H3 destruct /2 width=1/
266 lemma tri_TC_to_tri_star_to_tri_TC: ∀A,B,C,R,a1,a,a2,b1,b,b2,c1,c,c2.
267 tri_TC A B C R a1 b1 c1 a b c →
268 tri_star A B C R a b c a2 b2 c2 →
269 tri_TC A B C R a1 b1 c1 a2 b2 c2.
270 #A #B #C #R #a1 #a #a2 #b1 #b #b2 #c1 #c #c2 #H *
272 | * #H1 #H2 #H3 destruct /2 width=1/
276 lemma tri_tansitive_tri_star: ∀A,B,C,R. tri_transitive A B C (tri_star … R).
277 #A #B #C #R #a1 #a #b1 #b #c1 #c #H #a2 #b2 #c2 *
279 | * #H1 #H2 #H3 destruct /2 width=1/
283 lemma tri_star_ind: ∀A,B,C,R,a1,b1,c1. ∀P:relation3 A B C. P a1 b1 c1 →
284 (∀a,a2,b,b2,c,c2. tri_star … R a1 b1 c1 a b c → R a b c a2 b2 c2 → P a b c → P a2 b2 c2) →
285 ∀a2,b2,c2. tri_star … R a1 b1 c1 a2 b2 c2 → P a2 b2 c2.
286 #A #B #C #R #a1 #b1 #c1 #P #H #IH #a2 #b2 #c2 *
287 [ #H12 elim H12 -a2 -b2 -c2 /2 width=6/ -H /3 width=6/
288 | * #H1 #H2 #H3 destruct //
292 lemma tri_star_ind_dx: ∀A,B,C,R,a2,b2,c2. ∀P:relation3 A B C. P a2 b2 c2 →
293 (∀a1,a,b1,b,c1,c. R a1 b1 c1 a b c → tri_star … R a b c a2 b2 c2 → P a b c → P a1 b1 c1) →
294 ∀a1,b1,c1. tri_star … R a1 b1 c1 a2 b2 c2 → P a1 b1 c1.
295 #A #B #C #R #a2 #b2 #c2 #P #H #IH #a1 #b1 #c1 *
296 [ #H12 @(tri_TC_ind_dx … a1 b1 c1 H12) -a1 -b1 -c1 /2 width=6/ -H /3 width=6/
297 | * #H1 #H2 #H3 destruct //