1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 (* This file was generated by xoa.native: do not edit *********************)
17 include "basics/pts.ma".
19 include "ground_2/notation/xoa/notation.ma".
21 (* multiple existental quantifier (1, 2) *)
23 inductive ex1_2 (A0,A1:Type[0]) (P0:A0→A1→Prop) : Prop ≝
24 | ex1_2_intro: ∀x0,x1. P0 x0 x1 → ex1_2 ? ? ?
27 interpretation "multiple existental quantifier (1, 2)" 'Ex2 P0 = (ex1_2 ? ? P0).
29 (* multiple existental quantifier (1, 3) *)
31 inductive ex1_3 (A0,A1,A2:Type[0]) (P0:A0→A1→A2→Prop) : Prop ≝
32 | ex1_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → ex1_3 ? ? ? ?
35 interpretation "multiple existental quantifier (1, 3)" 'Ex3 P0 = (ex1_3 ? ? ? P0).
37 (* multiple existental quantifier (2, 2) *)
39 inductive ex2_2 (A0,A1:Type[0]) (P0,P1:A0→A1→Prop) : Prop ≝
40 | ex2_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → ex2_2 ? ? ? ?
43 interpretation "multiple existental quantifier (2, 2)" 'Ex2 P0 P1 = (ex2_2 ? ? P0 P1).
45 (* multiple existental quantifier (2, 3) *)
47 inductive ex2_3 (A0,A1,A2:Type[0]) (P0,P1:A0→A1→A2→Prop) : Prop ≝
48 | ex2_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → ex2_3 ? ? ? ? ?
51 interpretation "multiple existental quantifier (2, 3)" 'Ex3 P0 P1 = (ex2_3 ? ? ? P0 P1).
53 (* multiple existental quantifier (3, 1) *)
55 inductive ex3 (A0:Type[0]) (P0,P1,P2:A0→Prop) : Prop ≝
56 | ex3_intro: ∀x0. P0 x0 → P1 x0 → P2 x0 → ex3 ? ? ? ?
59 interpretation "multiple existental quantifier (3, 1)" 'Ex P0 P1 P2 = (ex3 ? P0 P1 P2).
61 (* multiple existental quantifier (3, 2) *)
63 inductive ex3_2 (A0,A1:Type[0]) (P0,P1,P2:A0→A1→Prop) : Prop ≝
64 | ex3_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → P2 x0 x1 → ex3_2 ? ? ? ? ?
67 interpretation "multiple existental quantifier (3, 2)" 'Ex2 P0 P1 P2 = (ex3_2 ? ? P0 P1 P2).
69 (* multiple existental quantifier (3, 3) *)
71 inductive ex3_3 (A0,A1,A2:Type[0]) (P0,P1,P2:A0→A1→A2→Prop) : Prop ≝
72 | ex3_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → ex3_3 ? ? ? ? ? ?
75 interpretation "multiple existental quantifier (3, 3)" 'Ex3 P0 P1 P2 = (ex3_3 ? ? ? P0 P1 P2).
77 (* multiple existental quantifier (3, 4) *)
79 inductive ex3_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2:A0→A1→A2→A3→Prop) : Prop ≝
80 | ex3_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → ex3_4 ? ? ? ? ? ? ?
83 interpretation "multiple existental quantifier (3, 4)" 'Ex4 P0 P1 P2 = (ex3_4 ? ? ? ? P0 P1 P2).
85 (* multiple existental quantifier (3, 5) *)
87 inductive ex3_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2:A0→A1→A2→A3→A4→Prop) : Prop ≝
88 | ex3_5_intro: ∀x0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 → P1 x0 x1 x2 x3 x4 → P2 x0 x1 x2 x3 x4 → ex3_5 ? ? ? ? ? ? ? ?
91 interpretation "multiple existental quantifier (3, 5)" 'Ex5 P0 P1 P2 = (ex3_5 ? ? ? ? ? P0 P1 P2).
93 (* multiple existental quantifier (4, 1) *)
95 inductive ex4 (A0:Type[0]) (P0,P1,P2,P3:A0→Prop) : Prop ≝
96 | ex4_intro: ∀x0. P0 x0 → P1 x0 → P2 x0 → P3 x0 → ex4 ? ? ? ? ?
99 interpretation "multiple existental quantifier (4, 1)" 'Ex P0 P1 P2 P3 = (ex4 ? P0 P1 P2 P3).
101 (* multiple existental quantifier (4, 2) *)
103 inductive ex4_2 (A0,A1:Type[0]) (P0,P1,P2,P3:A0→A1→Prop) : Prop ≝
104 | ex4_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → P2 x0 x1 → P3 x0 x1 → ex4_2 ? ? ? ? ? ?
107 interpretation "multiple existental quantifier (4, 2)" 'Ex2 P0 P1 P2 P3 = (ex4_2 ? ? P0 P1 P2 P3).
109 (* multiple existental quantifier (4, 3) *)
111 inductive ex4_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3:A0→A1→A2→Prop) : Prop ≝
112 | ex4_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → P3 x0 x1 x2 → ex4_3 ? ? ? ? ? ? ?
115 interpretation "multiple existental quantifier (4, 3)" 'Ex3 P0 P1 P2 P3 = (ex4_3 ? ? ? P0 P1 P2 P3).
117 (* multiple existental quantifier (4, 4) *)
119 inductive ex4_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3:A0→A1→A2→A3→Prop) : Prop ≝
120 | ex4_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → ex4_4 ? ? ? ? ? ? ? ?
123 interpretation "multiple existental quantifier (4, 4)" 'Ex4 P0 P1 P2 P3 = (ex4_4 ? ? ? ? P0 P1 P2 P3).
125 (* multiple existental quantifier (4, 5) *)
127 inductive ex4_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3:A0→A1→A2→A3→A4→Prop) : Prop ≝
128 | ex4_5_intro: ∀x0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 → P1 x0 x1 x2 x3 x4 → P2 x0 x1 x2 x3 x4 → P3 x0 x1 x2 x3 x4 → ex4_5 ? ? ? ? ? ? ? ? ?
131 interpretation "multiple existental quantifier (4, 5)" 'Ex5 P0 P1 P2 P3 = (ex4_5 ? ? ? ? ? P0 P1 P2 P3).
133 (* multiple existental quantifier (5, 2) *)
135 inductive ex5_2 (A0,A1:Type[0]) (P0,P1,P2,P3,P4:A0→A1→Prop) : Prop ≝
136 | ex5_2_intro: ∀x0,x1. P0 x0 x1 → P1 x0 x1 → P2 x0 x1 → P3 x0 x1 → P4 x0 x1 → ex5_2 ? ? ? ? ? ? ?
139 interpretation "multiple existental quantifier (5, 2)" 'Ex2 P0 P1 P2 P3 P4 = (ex5_2 ? ? P0 P1 P2 P3 P4).
141 (* multiple existental quantifier (5, 3) *)
143 inductive ex5_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3,P4:A0→A1→A2→Prop) : Prop ≝
144 | ex5_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → P3 x0 x1 x2 → P4 x0 x1 x2 → ex5_3 ? ? ? ? ? ? ? ?
147 interpretation "multiple existental quantifier (5, 3)" 'Ex3 P0 P1 P2 P3 P4 = (ex5_3 ? ? ? P0 P1 P2 P3 P4).
149 (* multiple existental quantifier (5, 4) *)
151 inductive ex5_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4:A0→A1→A2→A3→Prop) : Prop ≝
152 | ex5_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → P4 x0 x1 x2 x3 → ex5_4 ? ? ? ? ? ? ? ? ?
155 interpretation "multiple existental quantifier (5, 4)" 'Ex4 P0 P1 P2 P3 P4 = (ex5_4 ? ? ? ? P0 P1 P2 P3 P4).
157 (* multiple existental quantifier (5, 5) *)
159 inductive ex5_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3,P4:A0→A1→A2→A3→A4→Prop) : Prop ≝
160 | ex5_5_intro: ∀x0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 → P1 x0 x1 x2 x3 x4 → P2 x0 x1 x2 x3 x4 → P3 x0 x1 x2 x3 x4 → P4 x0 x1 x2 x3 x4 → ex5_5 ? ? ? ? ? ? ? ? ? ?
163 interpretation "multiple existental quantifier (5, 5)" 'Ex5 P0 P1 P2 P3 P4 = (ex5_5 ? ? ? ? ? P0 P1 P2 P3 P4).
165 (* multiple existental quantifier (5, 6) *)
167 inductive ex5_6 (A0,A1,A2,A3,A4,A5:Type[0]) (P0,P1,P2,P3,P4:A0→A1→A2→A3→A4→A5→Prop) : Prop ≝
168 | ex5_6_intro: ∀x0,x1,x2,x3,x4,x5. P0 x0 x1 x2 x3 x4 x5 → P1 x0 x1 x2 x3 x4 x5 → P2 x0 x1 x2 x3 x4 x5 → P3 x0 x1 x2 x3 x4 x5 → P4 x0 x1 x2 x3 x4 x5 → ex5_6 ? ? ? ? ? ? ? ? ? ? ?
171 interpretation "multiple existental quantifier (5, 6)" 'Ex6 P0 P1 P2 P3 P4 = (ex5_6 ? ? ? ? ? ? P0 P1 P2 P3 P4).
173 (* multiple existental quantifier (6, 3) *)
175 inductive ex6_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→Prop) : Prop ≝
176 | ex6_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → P3 x0 x1 x2 → P4 x0 x1 x2 → P5 x0 x1 x2 → ex6_3 ? ? ? ? ? ? ? ? ?
179 interpretation "multiple existental quantifier (6, 3)" 'Ex3 P0 P1 P2 P3 P4 P5 = (ex6_3 ? ? ? P0 P1 P2 P3 P4 P5).
181 (* multiple existental quantifier (6, 4) *)
183 inductive ex6_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→Prop) : Prop ≝
184 | ex6_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → P4 x0 x1 x2 x3 → P5 x0 x1 x2 x3 → ex6_4 ? ? ? ? ? ? ? ? ? ?
187 interpretation "multiple existental quantifier (6, 4)" 'Ex4 P0 P1 P2 P3 P4 P5 = (ex6_4 ? ? ? ? P0 P1 P2 P3 P4 P5).
189 (* multiple existental quantifier (6, 5) *)
191 inductive ex6_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→A4→Prop) : Prop ≝
192 | ex6_5_intro: ∀x0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 → P1 x0 x1 x2 x3 x4 → P2 x0 x1 x2 x3 x4 → P3 x0 x1 x2 x3 x4 → P4 x0 x1 x2 x3 x4 → P5 x0 x1 x2 x3 x4 → ex6_5 ? ? ? ? ? ? ? ? ? ? ?
195 interpretation "multiple existental quantifier (6, 5)" 'Ex5 P0 P1 P2 P3 P4 P5 = (ex6_5 ? ? ? ? ? P0 P1 P2 P3 P4 P5).
197 (* multiple existental quantifier (6, 6) *)
199 inductive ex6_6 (A0,A1,A2,A3,A4,A5:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→A4→A5→Prop) : Prop ≝
200 | ex6_6_intro: ∀x0,x1,x2,x3,x4,x5. P0 x0 x1 x2 x3 x4 x5 → P1 x0 x1 x2 x3 x4 x5 → P2 x0 x1 x2 x3 x4 x5 → P3 x0 x1 x2 x3 x4 x5 → P4 x0 x1 x2 x3 x4 x5 → P5 x0 x1 x2 x3 x4 x5 → ex6_6 ? ? ? ? ? ? ? ? ? ? ? ?
203 interpretation "multiple existental quantifier (6, 6)" 'Ex6 P0 P1 P2 P3 P4 P5 = (ex6_6 ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
205 (* multiple existental quantifier (6, 7) *)
207 inductive ex6_7 (A0,A1,A2,A3,A4,A5,A6:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→A4→A5→A6→Prop) : Prop ≝
208 | ex6_7_intro: ∀x0,x1,x2,x3,x4,x5,x6. P0 x0 x1 x2 x3 x4 x5 x6 → P1 x0 x1 x2 x3 x4 x5 x6 → P2 x0 x1 x2 x3 x4 x5 x6 → P3 x0 x1 x2 x3 x4 x5 x6 → P4 x0 x1 x2 x3 x4 x5 x6 → P5 x0 x1 x2 x3 x4 x5 x6 → ex6_7 ? ? ? ? ? ? ? ? ? ? ? ? ?
211 interpretation "multiple existental quantifier (6, 7)" 'Ex7 P0 P1 P2 P3 P4 P5 = (ex6_7 ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
213 (* multiple existental quantifier (6, 8) *)
215 inductive ex6_8 (A0,A1,A2,A3,A4,A5,A6,A7:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→A4→A5→A6→A7→Prop) : Prop ≝
216 | ex6_8_intro: ∀x0,x1,x2,x3,x4,x5,x6,x7. P0 x0 x1 x2 x3 x4 x5 x6 x7 → P1 x0 x1 x2 x3 x4 x5 x6 x7 → P2 x0 x1 x2 x3 x4 x5 x6 x7 → P3 x0 x1 x2 x3 x4 x5 x6 x7 → P4 x0 x1 x2 x3 x4 x5 x6 x7 → P5 x0 x1 x2 x3 x4 x5 x6 x7 → ex6_8 ? ? ? ? ? ? ? ? ? ? ? ? ? ?
219 interpretation "multiple existental quantifier (6, 8)" 'Ex8 P0 P1 P2 P3 P4 P5 = (ex6_8 ? ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
221 (* multiple existental quantifier (6, 9) *)
223 inductive ex6_9 (A0,A1,A2,A3,A4,A5,A6,A7,A8:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→A4→A5→A6→A7→A8→Prop) : Prop ≝
224 | ex6_9_intro: ∀x0,x1,x2,x3,x4,x5,x6,x7,x8. P0 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P1 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P2 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P3 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P4 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P5 x0 x1 x2 x3 x4 x5 x6 x7 x8 → ex6_9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
227 interpretation "multiple existental quantifier (6, 9)" 'Ex9 P0 P1 P2 P3 P4 P5 = (ex6_9 ? ? ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5).
229 (* multiple existental quantifier (7, 3) *)
231 inductive ex7_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0→A1→A2→Prop) : Prop ≝
232 | ex7_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → P3 x0 x1 x2 → P4 x0 x1 x2 → P5 x0 x1 x2 → P6 x0 x1 x2 → ex7_3 ? ? ? ? ? ? ? ? ? ?
235 interpretation "multiple existental quantifier (7, 3)" 'Ex3 P0 P1 P2 P3 P4 P5 P6 = (ex7_3 ? ? ? P0 P1 P2 P3 P4 P5 P6).
237 (* multiple existental quantifier (7, 4) *)
239 inductive ex7_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0→A1→A2→A3→Prop) : Prop ≝
240 | ex7_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → P4 x0 x1 x2 x3 → P5 x0 x1 x2 x3 → P6 x0 x1 x2 x3 → ex7_4 ? ? ? ? ? ? ? ? ? ? ?
243 interpretation "multiple existental quantifier (7, 4)" 'Ex4 P0 P1 P2 P3 P4 P5 P6 = (ex7_4 ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
245 (* multiple existental quantifier (7, 5) *)
247 inductive ex7_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0→A1→A2→A3→A4→Prop) : Prop ≝
248 | ex7_5_intro: ∀x0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 → P1 x0 x1 x2 x3 x4 → P2 x0 x1 x2 x3 x4 → P3 x0 x1 x2 x3 x4 → P4 x0 x1 x2 x3 x4 → P5 x0 x1 x2 x3 x4 → P6 x0 x1 x2 x3 x4 → ex7_5 ? ? ? ? ? ? ? ? ? ? ? ?
251 interpretation "multiple existental quantifier (7, 5)" 'Ex5 P0 P1 P2 P3 P4 P5 P6 = (ex7_5 ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
253 (* multiple existental quantifier (7, 6) *)
255 inductive ex7_6 (A0,A1,A2,A3,A4,A5:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0→A1→A2→A3→A4→A5→Prop) : Prop ≝
256 | ex7_6_intro: ∀x0,x1,x2,x3,x4,x5. P0 x0 x1 x2 x3 x4 x5 → P1 x0 x1 x2 x3 x4 x5 → P2 x0 x1 x2 x3 x4 x5 → P3 x0 x1 x2 x3 x4 x5 → P4 x0 x1 x2 x3 x4 x5 → P5 x0 x1 x2 x3 x4 x5 → P6 x0 x1 x2 x3 x4 x5 → ex7_6 ? ? ? ? ? ? ? ? ? ? ? ? ?
259 interpretation "multiple existental quantifier (7, 6)" 'Ex6 P0 P1 P2 P3 P4 P5 P6 = (ex7_6 ? ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
261 (* multiple existental quantifier (7, 7) *)
263 inductive ex7_7 (A0,A1,A2,A3,A4,A5,A6:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0→A1→A2→A3→A4→A5→A6→Prop) : Prop ≝
264 | ex7_7_intro: ∀x0,x1,x2,x3,x4,x5,x6. P0 x0 x1 x2 x3 x4 x5 x6 → P1 x0 x1 x2 x3 x4 x5 x6 → P2 x0 x1 x2 x3 x4 x5 x6 → P3 x0 x1 x2 x3 x4 x5 x6 → P4 x0 x1 x2 x3 x4 x5 x6 → P5 x0 x1 x2 x3 x4 x5 x6 → P6 x0 x1 x2 x3 x4 x5 x6 → ex7_7 ? ? ? ? ? ? ? ? ? ? ? ? ? ?
267 interpretation "multiple existental quantifier (7, 7)" 'Ex7 P0 P1 P2 P3 P4 P5 P6 = (ex7_7 ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
269 (* multiple existental quantifier (7, 9) *)
271 inductive ex7_9 (A0,A1,A2,A3,A4,A5,A6,A7,A8:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0→A1→A2→A3→A4→A5→A6→A7→A8→Prop) : Prop ≝
272 | ex7_9_intro: ∀x0,x1,x2,x3,x4,x5,x6,x7,x8. P0 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P1 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P2 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P3 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P4 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P5 x0 x1 x2 x3 x4 x5 x6 x7 x8 → P6 x0 x1 x2 x3 x4 x5 x6 x7 x8 → ex7_9 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
275 interpretation "multiple existental quantifier (7, 9)" 'Ex9 P0 P1 P2 P3 P4 P5 P6 = (ex7_9 ? ? ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
277 (* multiple existental quantifier (7, 10) *)
279 inductive ex7_10 (A0,A1,A2,A3,A4,A5,A6,A7,A8,A9:Type[0]) (P0,P1,P2,P3,P4,P5,P6:A0→A1→A2→A3→A4→A5→A6→A7→A8→A9→Prop) : Prop ≝
280 | ex7_10_intro: ∀x0,x1,x2,x3,x4,x5,x6,x7,x8,x9. P0 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P3 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P4 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P5 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P6 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → ex7_10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
283 interpretation "multiple existental quantifier (7, 10)" 'Ex10 P0 P1 P2 P3 P4 P5 P6 = (ex7_10 ? ? ? ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6).
285 (* multiple existental quantifier (8, 4) *)
287 inductive ex8_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3,P4,P5,P6,P7:A0→A1→A2→A3→Prop) : Prop ≝
288 | ex8_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → P4 x0 x1 x2 x3 → P5 x0 x1 x2 x3 → P6 x0 x1 x2 x3 → P7 x0 x1 x2 x3 → ex8_4 ? ? ? ? ? ? ? ? ? ? ? ?
291 interpretation "multiple existental quantifier (8, 4)" 'Ex4 P0 P1 P2 P3 P4 P5 P6 P7 = (ex8_4 ? ? ? ? P0 P1 P2 P3 P4 P5 P6 P7).
293 (* multiple existental quantifier (8, 5) *)
295 inductive ex8_5 (A0,A1,A2,A3,A4:Type[0]) (P0,P1,P2,P3,P4,P5,P6,P7:A0→A1→A2→A3→A4→Prop) : Prop ≝
296 | ex8_5_intro: ∀x0,x1,x2,x3,x4. P0 x0 x1 x2 x3 x4 → P1 x0 x1 x2 x3 x4 → P2 x0 x1 x2 x3 x4 → P3 x0 x1 x2 x3 x4 → P4 x0 x1 x2 x3 x4 → P5 x0 x1 x2 x3 x4 → P6 x0 x1 x2 x3 x4 → P7 x0 x1 x2 x3 x4 → ex8_5 ? ? ? ? ? ? ? ? ? ? ? ? ?
299 interpretation "multiple existental quantifier (8, 5)" 'Ex5 P0 P1 P2 P3 P4 P5 P6 P7 = (ex8_5 ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6 P7).
301 (* multiple existental quantifier (8, 10) *)
303 inductive ex8_10 (A0,A1,A2,A3,A4,A5,A6,A7,A8,A9:Type[0]) (P0,P1,P2,P3,P4,P5,P6,P7:A0→A1→A2→A3→A4→A5→A6→A7→A8→A9→Prop) : Prop ≝
304 | ex8_10_intro: ∀x0,x1,x2,x3,x4,x5,x6,x7,x8,x9. P0 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P1 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P2 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P3 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P4 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P5 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P6 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → P7 x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 → ex8_10 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
307 interpretation "multiple existental quantifier (8, 10)" 'Ex10 P0 P1 P2 P3 P4 P5 P6 P7 = (ex8_10 ? ? ? ? ? ? ? ? ? ? P0 P1 P2 P3 P4 P5 P6 P7).
309 (* multiple disjunction connective (3) *)
311 inductive or3 (P0,P1,P2:Prop) : Prop ≝
312 | or3_intro0: P0 → or3 ? ? ?
313 | or3_intro1: P1 → or3 ? ? ?
314 | or3_intro2: P2 → or3 ? ? ?
317 interpretation "multiple disjunction connective (3)" 'Or P0 P1 P2 = (or3 P0 P1 P2).
319 (* multiple disjunction connective (4) *)
321 inductive or4 (P0,P1,P2,P3:Prop) : Prop ≝
322 | or4_intro0: P0 → or4 ? ? ? ?
323 | or4_intro1: P1 → or4 ? ? ? ?
324 | or4_intro2: P2 → or4 ? ? ? ?
325 | or4_intro3: P3 → or4 ? ? ? ?
328 interpretation "multiple disjunction connective (4)" 'Or P0 P1 P2 P3 = (or4 P0 P1 P2 P3).
330 (* multiple disjunction connective (5) *)
332 inductive or5 (P0,P1,P2,P3,P4:Prop) : Prop ≝
333 | or5_intro0: P0 → or5 ? ? ? ? ?
334 | or5_intro1: P1 → or5 ? ? ? ? ?
335 | or5_intro2: P2 → or5 ? ? ? ? ?
336 | or5_intro3: P3 → or5 ? ? ? ? ?
337 | or5_intro4: P4 → or5 ? ? ? ? ?
340 interpretation "multiple disjunction connective (5)" 'Or P0 P1 P2 P3 P4 = (or5 P0 P1 P2 P3 P4).
342 (* multiple conjunction connective (3) *)
344 inductive and3 (P0,P1,P2:Prop) : Prop ≝
345 | and3_intro: P0 → P1 → P2 → and3 ? ? ?
348 interpretation "multiple conjunction connective (3)" 'And P0 P1 P2 = (and3 P0 P1 P2).
350 (* multiple conjunction connective (4) *)
352 inductive and4 (P0,P1,P2,P3:Prop) : Prop ≝
353 | and4_intro: P0 → P1 → P2 → P3 → and4 ? ? ? ?
356 interpretation "multiple conjunction connective (4)" 'And P0 P1 P2 P3 = (and4 P0 P1 P2 P3).