1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "static_2/syntax/ext2_tc.ma".
16 include "static_2/relocation/sex_tc.ma".
17 include "static_2/relocation/lex.ma".
19 alias symbol "subseteq" = "relation inclusion".
21 (* GENERIC EXTENSION OF A CONTEXT-SENSITIVE REALTION FOR TERMS **************)
23 (* Inversion lemmas with transitive closure *********************************)
25 (* Basic_2A1: was: lpx_sn_LTC_TC_lpx_sn *)
26 lemma lex_inv_CTC (R): c_reflexive … R →
27 lex (CTC … R) ⊆ TC … (lex R).
29 /5 width=11 by sex_inv_tc_dx, sex_co, ext2_inv_tc, ext2_refl, monotonic_TC, ex2_intro/
32 lemma s_rs_transitive_lex_inv_isid (R): s_rs_transitive … R (λ_.lex R) →
33 s_rs_transitive_isid cfull (cext2 R).
34 #R #HR #f #Hf #L2 #T1 #T2 #H #L1 #HL12
36 [ /3 width=1 by ext2_inv_tc, ext2_unit/
38 @ext2_inv_tc @ext2_pair
39 @(HR … HV12) -HV12 /2 width=3 by ex2_intro/ (**) (* auto fails *)
43 (* Properties with transitive closure ***************************************)
45 (* Basic_2A1: was: TC_lpx_sn_inv_lpx_sn_LTC *)
46 lemma lex_CTC (R): s_rs_transitive … R (λ_. lex R) →
47 TC … (lex R) ⊆ lex (CTC … R).
49 lapply (monotonic_TC … (sex cfull (cext2 R) 𝐢) … HL12) -HL12
50 [ #L1 #L2 * /3 width=3 by sex_eq_repl_fwd, pr_isi_inv_eq_id/
51 | /5 width=9 by s_rs_transitive_lex_inv_isid, sex_tc_dx, sex_co, ext2_tc, ex2_intro/
55 lemma lex_CTC_inj (R): s_rs_transitive … R (λ_. lex R) →
56 (lex R) ⊆ lex (CTC … R).
57 /3 width=1 by lex_CTC, inj/ qed-.
59 lemma lex_CTC_step_dx (R): c_reflexive … R → s_rs_transitive … R (λ_. lex R) →
60 ∀L1,L. lex (CTC … R) L1 L →
61 ∀L2. lex R L L2 → lex (CTC … R) L1 L2.
62 /4 width=3 by lex_CTC, lex_inv_CTC, step/ qed-.
64 lemma lex_CTC_step_sn (R): c_reflexive … R → s_rs_transitive … R (λ_. lex R) →
66 ∀L2. lex (CTC … R) L L2 → lex (CTC … R) L1 L2.
67 /4 width=3 by lex_CTC, lex_inv_CTC, TC_strap/ qed-.
69 (* Eliminators with transitive closure **************************************)
71 lemma lex_CTC_ind_sn (R) (L2): c_reflexive … R → s_rs_transitive … R (λ_. lex R) →
72 ∀Q:predicate lenv. Q L2 →
73 (∀L1,L. L1 ⪤[R] L → L ⪤[CTC … R] L2 → Q L → Q L1) →
74 ∀L1. L1 ⪤[CTC … R] L2 → Q L1.
75 #R #L2 #H1R #H2R #Q #IH1 #IH2 #L1 #H
76 lapply (lex_inv_CTC … H1R … H) -H #H
77 @(TC_star_ind_dx ???????? H) -H
78 /3 width=4 by lex_CTC, lex_refl/
81 lemma lex_CTC_ind_dx (R) (L1): c_reflexive … R → s_rs_transitive … R (λ_. lex R) →
82 ∀Q:predicate lenv. Q L1 →
83 (∀L,L2. L1 ⪤[CTC … R] L → L ⪤[R] L2 → Q L → Q L2) →
84 ∀L2. L1 ⪤[CTC … R] L2 → Q L2.
85 #R #L1 #H1R #H2R #Q #IH1 #IH2 #L2 #H
86 lapply (lex_inv_CTC … H1R … H) -H #H
87 @(TC_star_ind ???????? H) -H
88 /3 width=4 by lex_CTC, lex_refl/