1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "static_2/notation/relations/ideqsn_3.ma".
16 include "static_2/syntax/ceq_ext.ma".
17 include "static_2/relocation/sex.ma".
19 (* SYNTACTIC EQUIVALENCE FOR SELECTED LOCAL ENVIRONMENTS ********************)
21 (* Basic_2A1: includes: lreq_atom lreq_zero lreq_pair lreq_succ *)
22 definition seq: relation3 rtmap lenv lenv ≝ sex ceq_ext cfull.
25 "syntactic equivalence on selected entries (local environment)"
26 'IdEqSn f L1 L2 = (seq f L1 L2).
28 (* Basic properties *********************************************************)
30 lemma seq_eq_repl_back: ∀L1,L2. eq_repl_back … (λf. L1 ≡[f] L2).
31 /2 width=3 by sex_eq_repl_back/ qed-.
33 lemma seq_eq_repl_fwd: ∀L1,L2. eq_repl_fwd … (λf. L1 ≡[f] L2).
34 /2 width=3 by sex_eq_repl_fwd/ qed-.
36 lemma sle_seq_trans: ∀f2,L1,L2. L1 ≡[f2] L2 →
37 ∀f1. f1 ⊆ f2 → L1 ≡[f1] L2.
38 /2 width=3 by sle_sex_trans/ qed-.
40 (* Basic_2A1: includes: lreq_refl *)
41 lemma seq_refl: ∀f. reflexive … (seq f).
42 /2 width=1 by sex_refl/ qed.
44 (* Basic_2A1: includes: lreq_sym *)
45 lemma seq_sym: ∀f. symmetric … (seq f).
46 /3 width=2 by sex_sym, cext2_sym/ qed-.
48 (* Basic inversion lemmas ***************************************************)
50 (* Basic_2A1: includes: lreq_inv_atom1 *)
51 lemma seq_inv_atom1: ∀f,Y. ⋆ ≡[f] Y → Y = ⋆.
52 /2 width=4 by sex_inv_atom1/ qed-.
54 (* Basic_2A1: includes: lreq_inv_pair1 *)
55 lemma seq_inv_next1: ∀g,J,K1,Y. K1.ⓘ{J} ≡[↑g] Y →
56 ∃∃K2. K1 ≡[g] K2 & Y = K2.ⓘ{J}.
58 elim (sex_inv_next1 … H) -H #Z #K2 #HK12 #H1 #H2 destruct
59 <(ceq_ext_inv_eq … H1) -Z /2 width=3 by ex2_intro/
62 (* Basic_2A1: includes: lreq_inv_zero1 lreq_inv_succ1 *)
63 lemma seq_inv_push1: ∀g,J1,K1,Y. K1.ⓘ{J1} ≡[⫯g] Y →
64 ∃∃J2,K2. K1 ≡[g] K2 & Y = K2.ⓘ{J2}.
65 #g #J1 #K1 #Y #H elim (sex_inv_push1 … H) -H /2 width=4 by ex2_2_intro/
68 (* Basic_2A1: includes: lreq_inv_atom2 *)
69 lemma seq_inv_atom2: ∀f,X. X ≡[f] ⋆ → X = ⋆.
70 /2 width=4 by sex_inv_atom2/ qed-.
72 (* Basic_2A1: includes: lreq_inv_pair2 *)
73 lemma seq_inv_next2: ∀g,J,X,K2. X ≡[↑g] K2.ⓘ{J} →
74 ∃∃K1. K1 ≡[g] K2 & X = K1.ⓘ{J}.
76 elim (sex_inv_next2 … H) -H #Z #K1 #HK12 #H1 #H2 destruct
77 <(ceq_ext_inv_eq … H1) -J /2 width=3 by ex2_intro/
80 (* Basic_2A1: includes: lreq_inv_zero2 lreq_inv_succ2 *)
81 lemma seq_inv_push2: ∀g,J2,X,K2. X ≡[⫯g] K2.ⓘ{J2} →
82 ∃∃J1,K1. K1 ≡[g] K2 & X = K1.ⓘ{J1}.
83 #g #J2 #X #K2 #H elim (sex_inv_push2 … H) -H /2 width=4 by ex2_2_intro/
86 (* Basic_2A1: includes: lreq_inv_pair *)
87 lemma seq_inv_next: ∀f,I1,I2,L1,L2. L1.ⓘ{I1} ≡[↑f] L2.ⓘ{I2} →
88 ∧∧ L1 ≡[f] L2 & I1 = I2.
89 #f #I1 #I2 #L1 #L2 #H elim (sex_inv_next … H) -H
90 /3 width=3 by ceq_ext_inv_eq, conj/
93 (* Basic_2A1: includes: lreq_inv_succ *)
94 lemma seq_inv_push: ∀f,I1,I2,L1,L2. L1.ⓘ{I1} ≡[⫯f] L2.ⓘ{I2} → L1 ≡[f] L2.
95 #f #I1 #I2 #L1 #L2 #H elim (sex_inv_push … H) -H /2 width=1 by conj/
98 lemma seq_inv_tl: ∀f,I,L1,L2. L1 ≡[⫱f] L2 → L1.ⓘ{I} ≡[f] L2.ⓘ{I}.
99 /2 width=1 by sex_inv_tl/ qed-.
101 (* Basic_2A1: removed theorems 5:
102 lreq_pair_lt lreq_succ_lt lreq_pair_O_Y lreq_O2 lreq_inv_O_Y