]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/lambdadelta/static_2/static/feqg.ma
update in ground and delayed updating
[helm.git] / matita / matita / contribs / lambdadelta / static_2 / static / feqg.ma
1 (**************************************************************************)
2 (*       ___                                                              *)
3 (*      ||M||                                                             *)
4 (*      ||A||       A project by Andrea Asperti                           *)
5 (*      ||T||                                                             *)
6 (*      ||I||       Developers:                                           *)
7 (*      ||T||         The HELM team.                                      *)
8 (*      ||A||         http://helm.cs.unibo.it                             *)
9 (*      \   /                                                             *)
10 (*       \ /        This file is distributed under the terms of the       *)
11 (*        v         GNU General Public License Version 2                  *)
12 (*                                                                        *)
13 (**************************************************************************)
14
15 include "static_2/notation/relations/stareqsn_7.ma".
16 include "static_2/syntax/genv.ma".
17 include "static_2/static/reqg.ma".
18
19 (* GENERIC EQUIVALENCE FOR CLOSURES ON REFERRED ENTRIES *********************)
20
21 inductive feqg (S) (G) (L1) (T1): relation3 genv lenv term ≝
22 | feqg_intro_sn: ∀L2,T2. L1 ≛[S,T1] L2 → T1 ≛[S] T2 →
23                  feqg S G L1 T1 G L2 T2
24 .
25
26 interpretation
27   "generic equivalence on referred entries (closure)"
28   'StarEqSn S G1 L1 T1 G2 L2 T2 = (feqg S G1 L1 T1 G2 L2 T2).
29
30 (* Basic_properties *********************************************************)
31
32 lemma feqg_intro_dx (S) (G):
33       reflexive … S → symmetric … S →
34       ∀L1,L2,T2. L1 ≛[S,T2] L2 →
35       ∀T1. T1 ≛[S] T2 → ❨G,L1,T1❩ ≛[S] ❨G,L2,T2❩.
36 /3 width=6 by feqg_intro_sn, teqg_reqg_div/ qed.
37
38 (* Basic inversion lemmas ***************************************************)
39
40 lemma feqg_inv_gen_sn (S):
41       ∀G1,G2,L1,L2,T1,T2. ❨G1,L1,T1❩ ≛[S] ❨G2,L2,T2❩ →
42       ∧∧ G1 = G2 & L1 ≛[S,T1] L2 & T1 ≛[S] T2.
43 #S #G1 #G2 #L1 #L2 #T1 #T2 * -G2 -L2 -T2 /2 width=1 by and3_intro/
44 qed-.
45
46 lemma feqg_inv_gen_dx (S):
47       reflexive … S →
48       ∀G1,G2,L1,L2,T1,T2. ❨G1,L1,T1❩ ≛[S] ❨G2,L2,T2❩ →
49       ∧∧ G1 = G2 & L1 ≛[S,T2] L2 & T1 ≛[S] T2.
50 #S #HS #G1 #G2 #L1 #L2 #T1 #T2 * -G2 -L2 -T2
51 /3 width=6 by teqg_reqg_conf_sn, and3_intro/
52 qed-.
53
54 (* Basic forward lemmas *****************************************************)
55
56 lemma feqg_fwd_teqg (S):
57       ∀G1,G2,L1,L2,T1,T2. ❨G1,L1,T1❩ ≛[S] ❨G2,L2,T2❩ → T1 ≛[S] T2.
58 #S #G1 #G2 #L1 #L2 #T1 #T2 #H
59 elim (feqg_inv_gen_sn … H) -H //
60 qed-.
61
62 lemma feqg_fwd_reqg_sn (S):
63       ∀G1,G2,L1,L2,T1,T2. ❨G1,L1,T1❩ ≛[S] ❨G2,L2,T2❩ → L1 ≛[S,T1] L2.
64 #S #G1 #G2 #L1 #L2 #T1 #T2 #H
65 elim (feqg_inv_gen_sn … H) -H //
66 qed-.
67
68 lemma feqg_fwd_reqg_dx (S):
69       reflexive … S →
70       ∀G1,G2,L1,L2,T1,T2. ❨G1,L1,T1❩ ≛[S] ❨G2,L2,T2❩ → L1 ≛[S,T2] L2.
71 #S #HS #G1 #G2 #L1 #L2 #T1 #T2 #H
72 elim (feqg_inv_gen_dx … H) -H //
73 qed-.
74
75 (* Basic_2A1: removed theorems 6:
76               fleq_refl fleq_sym fleq_inv_gen
77               fleq_trans fleq_canc_sn fleq_canc_dx
78 *)