1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "static_2/static/frees_fqup.ma".
16 include "static_2/static/fsle_length.ma".
18 (* FREE VARIABLES INCLUSION FOR RESTRICTED CLOSURES *************************)
20 (* Advanced properties ******************************************************)
22 lemma fsle_refl: bi_reflexive … fsle.
24 elim (frees_total L T) #f #Hf
25 /2 width=8 by pr_sle_refl, ex4_4_intro/
28 lemma fsle_shift: ∀L1,L2. |L1| = |L2| →
29 ∀I,T1,T2,V. ❨L1.ⓧ,T1❩ ⊆ ❨L2.ⓑ[I]V,T2❩ →
30 ∀p. ❨L1.ⓧ,T1❩ ⊆ ❨L2,ⓑ[p,I]V.T2❩.
31 #L1 #L2 #H1L #I #T1 #T2 #V
32 * #n #m #f2 #g2 #Hf2 #Hg2 #H2L #Hfg2 #p
33 elim (lveq_inj_length … H2L) // -H1L #H1 #H2 destruct
34 lapply (lveq_inv_bind_O … H2L) -H2L #HL
35 elim (frees_total L2 V) #g1 #Hg1
36 elim (pr_sor_isf_bi g1 (⫰g2)) /3 width=3 by frees_fwd_isfin, pr_isf_tl/ #g #Hg #_
37 lapply (pr_sor_inv_sle_dx … Hg) #H0g
38 /4 width=10 by frees_bind, lveq_void_sn, pr_sle_tl, pr_sle_trans, ex4_4_intro/
41 lemma fsle_bind_dx_sn: ∀L1,L2,V1,V2. ❨L1,V1❩ ⊆ ❨L2,V2❩ →
42 ∀p,I,T2. ❨L1,V1❩ ⊆ ❨L2,ⓑ[p,I]V2.T2❩.
43 #L1 #L2 #V1 #V2 * #n1 #m1 #f1 #g1 #Hf1 #Hg1 #HL12 #Hfg1 #p #I #T2
44 elim (frees_total (L2.ⓧ) T2) #g2 #Hg2
45 elim (pr_sor_isf_bi g1 (⫰g2)) /3 width=3 by frees_fwd_isfin, pr_isf_tl/ #g #Hg #_
46 @(ex4_4_intro … g Hf1 … HL12) (**) (* full auto too slow *)
47 /4 width=5 by frees_bind_void, pr_sor_inv_sle_sn, pr_sor_tls, pr_sle_trans/
50 lemma fsle_bind_dx_dx: ∀L1,L2,T1,T2. ❨L1,T1❩ ⊆ ❨L2.ⓧ,T2❩ → |L1| ≤ |L2| →
51 ∀p,I,V2. ❨L1,T1❩ ⊆ ❨L2,ⓑ[p,I]V2.T2❩.
52 #L1 #L2 #T1 #T2 * #n1 #x1 #f2 #g2 #Hf2 #Hg2 #H #Hfg2 #HL12 #p #I #V2
53 elim (lveq_inv_void_dx_length … H HL12) -H -HL12 #m1 #HL12 #H1 #H2 destruct
54 <pr_tls_swap in Hfg2; #Hfg2
55 elim (frees_total L2 V2) #g1 #Hg1
56 elim (pr_sor_isf_bi g1 (⫰g2)) /3 width=3 by frees_fwd_isfin, pr_isf_tl/ #g #Hg #_
57 @(ex4_4_intro … g Hf2 … HL12) (**) (* full auto too slow *)
58 /4 width=5 by frees_bind_void, pr_sor_inv_sle_dx, pr_sor_tls, pr_sle_trans/
61 lemma fsle_flat_dx_sn: ∀L1,L2,V1,V2. ❨L1,V1❩ ⊆ ❨L2,V2❩ →
62 ∀I,T2. ❨L1,V1❩ ⊆ ❨L2,ⓕ[I]V2.T2❩.
63 #L1 #L2 #V1 #V2 * #n1 #m1 #f1 #g1 #Hf1 #Hg1 #HL12 #Hfg1 #I #T2
64 elim (frees_total L2 T2) #g2 #Hg2
65 elim (pr_sor_isf_bi g1 g2) /2 width=3 by frees_fwd_isfin/ #g #Hg #_
66 @(ex4_4_intro … g Hf1 … HL12) (**) (* full auto too slow *)
67 /4 width=5 by frees_flat, pr_sor_inv_sle_sn, pr_sor_tls, pr_sle_trans/
70 lemma fsle_flat_dx_dx: ∀L1,L2,T1,T2. ❨L1,T1❩ ⊆ ❨L2,T2❩ →
71 ∀I,V2. ❨L1,T1❩ ⊆ ❨L2,ⓕ[I]V2.T2❩.
72 #L1 #L2 #T1 #T2 * #n1 #m1 #f2 #g2 #Hf2 #Hg2 #HL12 #Hfg2 #I #V2
73 elim (frees_total L2 V2) #g1 #Hg1
74 elim (pr_sor_isf_bi g1 g2) /2 width=3 by frees_fwd_isfin/ #g #Hg #_
75 @(ex4_4_intro … g Hf2 … HL12) (**) (* full auto too slow *)
76 /4 width=5 by frees_flat, pr_sor_inv_sle_dx, pr_sor_tls, pr_sle_trans/
79 (* Advanced forward lemmas ***************************************************)
81 lemma fsle_fwd_pair_sn: ∀I1,I2,L1,L2,V1,V2,T1,T2. ❨L1.ⓑ[I1]V1,T1❩ ⊆ ❨L2.ⓑ[I2]V2,T2❩ →
82 ❨L1.ⓧ,T1❩ ⊆ ❨L2.ⓑ[I2]V2,T2❩.
83 #I1 #I2 #L1 #L2 #V1 #V2 #T1 #T2 *
84 #n1 #n2 #f1 #f2 #Hf1 #Hf2 #HL12 #Hf12
85 elim (lveq_inv_pair_pair … HL12) -HL12 #HL12 #H1 #H2 destruct
86 elim (frees_total (L1.ⓧ) T1) #g1 #Hg1
87 lapply (lsubr_lsubf … Hg1 … Hf1) -Hf1 /2 width=1 by lsubr_unit/ #Hfg1
88 /5 width=10 by lsubf_fwd_sle, lveq_bind, pr_sle_trans, ex4_4_intro/ (**) (* full auto too slow *)