1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "static_2/notation/relations/approxeqsn_3.ma".
16 include "static_2/syntax/teqx_ext.ma".
17 include "static_2/static/reqg.ma".
19 (* SORT-IRRELEVANT EQUIVALENCE FOR LOCAL ENVIRONMENTS ON REFERRED ENTRIES ***)
21 definition reqx: relation3 โฆ โ
25 "sort-irrelevant equivalence on referred entries (local environment)"
26 'ApproxEqSn T L1 L2 = (reqg sfull T L1 L2).
29 "sort-irrelevant ranged equivalence (local environment)"
30 'StarEqSn f L1 L2 = (sex ceqx_ext cfull f L1 L2).
32 (* Basic properties ***********************************************************)
34 lemma frees_teqx_conf_reqx:
35 โf,L1,T1. L1 โข ๐
+โจT1โฉ โ f โ โT2. T1 โ T2 โ
36 โL2. L1 โ[f] L2 โ L2 โข ๐
+โจT2โฉ โ f.
37 #f #L1 #T1 #H elim H -f -L1 -T1
38 [ #f #L1 #s1 #Hf #X #H1 #L2 #_
39 elim (teqx_inv_sort1 โฆ H1) -H1 #s2 #H destruct
40 /2 width=3 by frees_sort/
42 >(teqx_inv_lref1 โฆ H1) -X #Y #H2
43 >(sex_inv_atom1 โฆ H2) -Y
44 /2 width=1 by frees_atom/
45 | #f #I #L1 #V1 #_ #IH #X #H1
46 >(teqx_inv_lref1 โฆ H1) -X #Y #H2
47 elim (sex_inv_next1 โฆ H2) -H2 #Z #L2 #HL12 #HZ #H destruct
48 elim (ext2_inv_pair_sn โฆ HZ) -HZ #V2 #HV12 #H destruct
49 /3 width=1 by frees_pair/
50 | #f #I #L1 #Hf #X #H1
51 >(teqx_inv_lref1 โฆ H1) -X #Y #H2
52 elim (sex_inv_next1 โฆ H2) -H2 #Z #L2 #_ #HZ #H destruct
53 >(ext2_inv_unit_sn โฆ HZ) -Z /2 width=1 by frees_unit/
54 | #f #I #L1 #i #_ #IH #X #H1
55 >(teqx_inv_lref1 โฆ H1) -X #Y #H2
56 elim (sex_inv_push1 โฆ H2) -H2 #J #L2 #HL12 #_ #H destruct
57 /3 width=1 by frees_lref/
58 | #f #L1 #l #Hf #X #H1 #L2 #_
59 >(teqx_inv_gref1 โฆ H1) -X /2 width=1 by frees_gref/
60 | #f1V #f1T #f1 #p #I #L1 #V1 #T1 #_ #_ #Hf1 #IHV #IHT #X #H1
61 elim (teqx_inv_pair1 โฆ H1) -H1 #V2 #T2 #HV12 #HT12 #H1 #L2 #HL12 destruct
62 /6 width=5 by frees_bind, sex_inv_tl, ext2_pair, sle_sex_trans, sor_inv_sle_dx, sor_inv_sle_sn/
63 | #f1V #f1T #f1 #I #L1 #V1 #T1 #_ #_ #Hf1 #IHV #IHT #X #H1
64 elim (teqx_inv_pair1 โฆ H1) -H1 #V2 #T2 #HV12 #HT12 #H1 #L2 #HL12 destruct
65 /5 width=5 by frees_flat, sle_sex_trans, sor_inv_sle_dx, sor_inv_sle_sn/
69 lemma frees_teqx_conf:
70 โf,L,T1. L โข ๐
+โจT1โฉ โ f โ
71 โT2. T1 โ T2 โ L โข ๐
+โจT2โฉ โ f.
72 /4 width=7 by frees_teqx_conf_reqx, sex_refl, ext2_refl/ qed-.
74 lemma frees_reqx_conf:
75 โf,L1,T. L1 โข ๐
+โจTโฉ โ f โ
76 โL2. L1 โ[f] L2 โ L2 โข ๐
+โจTโฉ โ f.
77 /2 width=7 by frees_teqx_conf_reqx, teqx_refl/ qed-.
79 lemma teqx_rex_conf_sn (R):
80 s_r_confluent1 โฆ cdeq (rex R).
81 #R #L1 #T1 #T2 #HT12 #L2 *
82 /3 width=5 by frees_teqx_conf, ex2_intro/
85 lemma teqx_rex_div (R):
86 โT1,T2. T1 โ T2 โ
87 โL1,L2. L1 โชค[R,T2] L2 โ L1 โชค[R,T1] L2.
88 /3 width=5 by teqx_rex_conf_sn, teqx_sym/ qed-.
90 lemma teqx_reqx_conf_sn:
91 s_r_confluent1 โฆ cdeq reqx.
92 /2 width=5 by teqx_rex_conf_sn/ qed-.
95 โT1,T2. T1 โ T2 โ
96 โL1,L2. L1 โ[T2] L2 โ L1 โ[T1] L2.
97 /2 width=5 by teqx_rex_div/ qed-.
99 lemma reqx_atom: โI. โ โ[โช[I]] โ.
100 /2 width=1 by rex_atom/ qed.
104 L1 โ[โs] L2 โ L1.โ[I1] โ[โs] L2.โ[I2].
105 /2 width=1 by rex_sort/ qed.
109 L1 โ[V1] L2 โ V1 โ V2 โ L1.โ[I]V1 โ[#0] L2.โ[I]V2.
110 /2 width=1 by rex_pair/ qed.
113 โf,I,L1,L2. ๐โจfโฉ โ L1 โ[f] L2 โ
114 L1.โค[I] โ[#0] L2.โค[I].
115 /2 width=3 by rex_unit/ qed.
119 L1 โ[#i] L2 โ L1.โ[I1] โ[#โi] L2.โ[I2].
120 /2 width=1 by rex_lref/ qed.
124 L1 โ[ยงl] L2 โ L1.โ[I1] โ[ยงl] L2.โ[I2].
125 /2 width=1 by rex_gref/ qed.
127 lemma reqx_bind_repl_dx:
128 โI,I1,L1,L2.โT:term. L1.โ[I] โ[T] L2.โ[I1] โ
129 โI2. I โ I2 โ L1.โ[I] โ[T] L2.โ[I2].
130 /2 width=2 by rex_bind_repl_dx/ qed-.
132 lemma reqg_reqx (S) (T):
133 โL1,L2. L1 โ[S,T] L2 โ L1 โ
[T] L2.
134 /2 width=3 by reqg_co/ qed.
136 (* Basic inversion lemmas ***************************************************)
138 lemma reqx_inv_atom_sn:
139 โY2. โT:term. โ โ[T] Y2 โ Y2 = โ.
140 /2 width=3 by rex_inv_atom_sn/ qed-.
142 lemma reqx_inv_atom_dx:
143 โY1. โT:term. Y1 โ[T] โ โ Y1 = โ.
144 /2 width=3 by rex_inv_atom_dx/ qed-.
147 โY1,Y2. Y1 โ[#0] Y2 โ
148 โจโจ โงโง Y1 = โ & Y2 = โ
149 | โโI,L1,L2,V1,V2. L1 โ[V1] L2 & V1 โ V2 & Y1 = L1.โ[I]V1 & Y2 = L2.โ[I]V2
150 | โโf,I,L1,L2. ๐โจfโฉ & L1 โ[f] L2 & Y1 = L1.โค[I] & Y2 = L2.โค[I].
151 #Y1 #Y2 #H elim (rex_inv_zero โฆ H) -H *
152 /3 width=9 by or3_intro0, or3_intro1, or3_intro2, ex4_5_intro, ex4_4_intro, conj/
156 โY1,Y2,i. Y1 โ[#โi] Y2 โ
157 โจโจ โงโง Y1 = โ & Y2 = โ
158 | โโI1,I2,L1,L2. L1 โ[#i] L2 & Y1 = L1.โ[I1] & Y2 = L2.โ[I2].
159 /2 width=1 by rex_inv_lref/ qed-.
161 (* Basic_2A1: uses: lleq_inv_bind lleq_inv_bind_O *)
163 โp,I,L1,L2,V,T. L1 โ[โ[p,I]V.T] L2 โ
164 โงโง L1 โ[V] L2 & L1.โ[I]V โ[T] L2.โ[I]V.
165 /2 width=2 by rex_inv_bind/ qed-.
167 (* Basic_2A1: uses: lleq_inv_flat *)
169 โI,L1,L2,V,T. L1 โ[โ[I]V.T] L2 โ
170 โงโง L1 โ[V] L2 & L1 โ[T] L2.
171 /2 width=2 by rex_inv_flat/ qed-.
173 (* Advanced inversion lemmas ************************************************)
175 lemma reqx_inv_zero_pair_sn:
176 โI,Y2,L1,V1. L1.โ[I]V1 โ[#0] Y2 โ
177 โโL2,V2. L1 โ[V1] L2 & V1 โ V2 & Y2 = L2.โ[I]V2.
178 /2 width=1 by rex_inv_zero_pair_sn/ qed-.
180 lemma reqx_inv_zero_pair_dx:
181 โI,Y1,L2,V2. Y1 โ[#0] L2.โ[I]V2 โ
182 โโL1,V1. L1 โ[V1] L2 & V1 โ V2 & Y1 = L1.โ[I]V1.
183 /2 width=1 by rex_inv_zero_pair_dx/ qed-.
185 lemma reqx_inv_lref_bind_sn:
186 โI1,Y2,L1,i. L1.โ[I1] โ[#โi] Y2 โ
187 โโI2,L2. L1 โ[#i] L2 & Y2 = L2.โ[I2].
188 /2 width=2 by rex_inv_lref_bind_sn/ qed-.
190 lemma reqx_inv_lref_bind_dx:
191 โI2,Y1,L2,i. Y1 โ[#โi] L2.โ[I2] โ
192 โโI1,L1. L1 โ[#i] L2 & Y1 = L1.โ[I1].
193 /2 width=2 by rex_inv_lref_bind_dx/ qed-.
195 (* Basic forward lemmas *****************************************************)
197 lemma reqx_fwd_zero_pair:
199 K1.โ[I]V1 โ[#0] K2.โ[I]V2 โ K1 โ[V1] K2.
200 /2 width=3 by rex_fwd_zero_pair/ qed-.
202 (* Basic_2A1: uses: lleq_fwd_bind_sn lleq_fwd_flat_sn *)
203 lemma reqx_fwd_pair_sn:
204 โI,L1,L2,V,T. L1 โ[โก[I]V.T] L2 โ L1 โ[V] L2.
205 /2 width=3 by rex_fwd_pair_sn/ qed-.
207 (* Basic_2A1: uses: lleq_fwd_bind_dx lleq_fwd_bind_O_dx *)
208 lemma reqx_fwd_bind_dx:
210 L1 โ[โ[p,I]V.T] L2 โ L1.โ[I]V โ[T] L2.โ[I]V.
211 /2 width=2 by rex_fwd_bind_dx/ qed-.
213 (* Basic_2A1: uses: lleq_fwd_flat_dx *)
214 lemma reqx_fwd_flat_dx:
215 โI,L1,L2,V,T. L1 โ[โ[I]V.T] L2 โ L1 โ[T] L2.
216 /2 width=3 by rex_fwd_flat_dx/ qed-.
219 โI2,L1,K2. โT:term. L1 โ[T] K2.โ[I2] โ
220 โโI1,K1. L1 = K1.โ[I1].
221 /2 width=5 by rex_fwd_dx/ qed-.