1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/xoa/ex_1_2.ma".
16 include "ground/xoa/ex_3_4.ma".
17 include "ground/xoa/ex_4_4.ma".
18 include "ground/xoa/ex_4_5.ma".
19 include "ground/relocation/rtmap_id.ma".
20 include "static_2/notation/relations/relation_4.ma".
21 include "static_2/syntax/cext2.ma".
22 include "static_2/relocation/sex.ma".
23 include "static_2/static/frees.ma".
25 (* GENERIC EXTENSION ON REFERRED ENTRIES OF A CONTEXT-SENSITIVE REALTION ****)
27 definition rex (R) (T): relation lenv ≝
28 λL1,L2. ∃∃f. L1 ⊢ 𝐅+❨T❩ ≘ f & L1 ⪤[cext2 R,cfull,f] L2.
31 "generic extension on referred entries (local environment)"
32 'Relation R T L1 L2 = (rex R T L1 L2).
34 definition R_confluent2_rex:
35 relation4 (relation3 lenv term term)
36 (relation3 lenv term term) … ≝
38 ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
39 ∀L1. L0 ⪤[RP1,T0] L1 → ∀L2. L0 ⪤[RP2,T0] L2 →
40 ∃∃T. R2 L1 T1 T & R1 L2 T2 T.
42 definition R_replace3_rex:
43 relation4 (relation3 lenv term term)
44 (relation3 lenv term term) … ≝
46 ∀L0,T0,T1. R1 L0 T0 T1 → ∀T2. R2 L0 T0 T2 →
47 ∀L1. L0 ⪤[RP1,T0] L1 → ∀L2. L0 ⪤[RP2,T0] L2 →
48 ∀T. R2 L1 T1 T → R1 L2 T2 T.
50 definition R_transitive_rex: relation3 ? (relation3 ?? term) … ≝
52 ∀K1,K,V1. K1 ⪤[R1,V1] K →
53 ∀V. R1 K1 V1 V → ∀V2. R2 K V V2 → R3 K1 V1 V2.
55 definition R_confluent1_rex: relation … ≝
57 ∀K1,K2,V1. K1 ⪤[R2,V1] K2 → ∀V2. R1 K1 V1 V2 → R1 K2 V1 V2.
59 definition rex_confluent: relation … ≝
61 ∀K1,K,V1. K1 ⪤[R1,V1] K → ∀V. R1 K1 V1 V →
62 ∀K2. K ⪤[R2,V] K2 → K ⪤[R2,V1] K2.
64 (* Basic inversion lemmas ***************************************************)
66 lemma rex_inv_atom_sn (R):
67 ∀Y2,T. ⋆ ⪤[R,T] Y2 → Y2 = ⋆.
68 #R #Y2 #T * /2 width=4 by sex_inv_atom1/
71 lemma rex_inv_atom_dx (R):
72 ∀Y1,T. Y1 ⪤[R,T] ⋆ → Y1 = ⋆.
73 #R #I #Y1 * /2 width=4 by sex_inv_atom2/
76 lemma rex_inv_sort (R):
77 ∀Y1,Y2,s. Y1 ⪤[R,⋆s] Y2 →
79 | ∃∃I1,I2,L1,L2. L1 ⪤[R,⋆s] L2 & Y1 = L1.ⓘ[I1] & Y2 = L2.ⓘ[I2].
80 #R * [ | #Y1 #I1 ] #Y2 #s * #f #H1 #H2
81 [ lapply (sex_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
82 | lapply (frees_inv_sort … H1) -H1 #Hf
83 elim (pr_isi_inv_gen … Hf) -Hf #g #Hg #H destruct
84 elim (sex_inv_push1 … H2) -H2 #I2 #L2 #H12 #_ #H destruct
85 /5 width=7 by frees_sort, ex3_4_intro, ex2_intro, or_intror/
89 lemma rex_inv_zero (R):
90 ∀Y1,Y2. Y1 ⪤[R,#0] Y2 →
92 | ∃∃I,L1,L2,V1,V2. L1 ⪤[R,V1] L2 & R L1 V1 V2 & Y1 = L1.ⓑ[I]V1 & Y2 = L2.ⓑ[I]V2
93 | ∃∃f,I,L1,L2. 𝐈❨f❩ & L1 ⪤[cext2 R,cfull,f] L2 & Y1 = L1.ⓤ[I] & Y2 = L2.ⓤ[I].
94 #R * [ | #Y1 * #I1 [ | #X ] ] #Y2 * #f #H1 #H2
95 [ lapply (sex_inv_atom1 … H2) -H2 /3 width=1 by or3_intro0, conj/
96 | elim (frees_inv_unit … H1) -H1 #g #HX #H destruct
97 elim (sex_inv_next1 … H2) -H2 #I2 #L2 #HL12 #H #H2 destruct
98 >(ext2_inv_unit_sn … H) -H /3 width=8 by or3_intro2, ex4_4_intro/
99 | elim (frees_inv_pair … H1) -H1 #g #Hg #H destruct
100 elim (sex_inv_next1 … H2) -H2 #Z2 #L2 #HL12 #H
101 elim (ext2_inv_pair_sn … H) -H
102 /4 width=9 by or3_intro1, ex4_5_intro, ex2_intro/
106 lemma rex_inv_lref (R):
107 ∀Y1,Y2,i. Y1 ⪤[R,#↑i] Y2 →
108 ∨∨ ∧∧ Y1 = ⋆ & Y2 = ⋆
109 | ∃∃I1,I2,L1,L2. L1 ⪤[R,#i] L2 & Y1 = L1.ⓘ[I1] & Y2 = L2.ⓘ[I2].
110 #R * [ | #Y1 #I1 ] #Y2 #i * #f #H1 #H2
111 [ lapply (sex_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
112 | elim (frees_inv_lref … H1) -H1 #g #Hg #H destruct
113 elim (sex_inv_push1 … H2) -H2
114 /4 width=7 by ex3_4_intro, ex2_intro, or_intror/
118 lemma rex_inv_gref (R):
119 ∀Y1,Y2,l. Y1 ⪤[R,§l] Y2 →
120 ∨∨ ∧∧ Y1 = ⋆ & Y2 = ⋆
121 | ∃∃I1,I2,L1,L2. L1 ⪤[R,§l] L2 & Y1 = L1.ⓘ[I1] & Y2 = L2.ⓘ[I2].
122 #R * [ | #Y1 #I1 ] #Y2 #l * #f #H1 #H2
123 [ lapply (sex_inv_atom1 … H2) -H2 /3 width=1 by or_introl, conj/
124 | lapply (frees_inv_gref … H1) -H1 #Hf
125 elim (pr_isi_inv_gen … Hf) -Hf #g #Hg #H destruct
126 elim (sex_inv_push1 … H2) -H2 #I2 #L2 #H12 #_ #H destruct
127 /5 width=7 by frees_gref, ex3_4_intro, ex2_intro, or_intror/
131 (* Basic_2A1: uses: llpx_sn_inv_bind llpx_sn_inv_bind_O *)
132 lemma rex_inv_bind (R):
133 ∀p,I,L1,L2,V1,V2,T. L1 ⪤[R,ⓑ[p,I]V1.T] L2 → R L1 V1 V2 →
134 ∧∧ L1 ⪤[R,V1] L2 & L1.ⓑ[I]V1 ⪤[R,T] L2.ⓑ[I]V2.
135 #R #p #I #L1 #L2 #V1 #V2 #T * #f #Hf #HL #HV elim (frees_inv_bind … Hf) -Hf
136 /6 width=6 by sle_sex_trans, sex_inv_tl, ext2_pair, pr_sor_inv_sle_dx, pr_sor_inv_sle_sn, ex2_intro, conj/
139 (* Basic_2A1: uses: llpx_sn_inv_flat *)
140 lemma rex_inv_flat (R):
141 ∀I,L1,L2,V,T. L1 ⪤[R,ⓕ[I]V.T] L2 →
142 ∧∧ L1 ⪤[R,V] L2 & L1 ⪤[R,T] L2.
143 #R #I #L1 #L2 #V #T * #f #Hf #HL elim (frees_inv_flat … Hf) -Hf
144 /5 width=6 by sle_sex_trans, pr_sor_inv_sle_dx, pr_sor_inv_sle_sn, ex2_intro, conj/
147 (* Advanced inversion lemmas ************************************************)
149 lemma rex_inv_sort_bind_sn (R):
150 ∀I1,K1,L2,s. K1.ⓘ[I1] ⪤[R,⋆s] L2 →
151 ∃∃I2,K2. K1 ⪤[R,⋆s] K2 & L2 = K2.ⓘ[I2].
152 #R #I1 #K1 #L2 #s #H elim (rex_inv_sort … H) -H *
154 | #Z1 #I2 #Y1 #K2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
158 lemma rex_inv_sort_bind_dx (R):
159 ∀I2,K2,L1,s. L1 ⪤[R,⋆s] K2.ⓘ[I2] →
160 ∃∃I1,K1. K1 ⪤[R,⋆s] K2 & L1 = K1.ⓘ[I1].
161 #R #I2 #K2 #L1 #s #H elim (rex_inv_sort … H) -H *
163 | #I1 #Z2 #K1 #Y2 #Hs #H1 #H2 destruct /2 width=4 by ex2_2_intro/
167 lemma rex_inv_zero_pair_sn (R):
168 ∀I,L2,K1,V1. K1.ⓑ[I]V1 ⪤[R,#0] L2 →
169 ∃∃K2,V2. K1 ⪤[R,V1] K2 & R K1 V1 V2 & L2 = K2.ⓑ[I]V2.
170 #R #I #L2 #K1 #V1 #H elim (rex_inv_zero … H) -H *
172 | #Z #Y1 #K2 #X1 #V2 #HK12 #HV12 #H1 #H2 destruct
173 /2 width=5 by ex3_2_intro/
174 | #f #Z #Y1 #Y2 #_ #_ #H destruct
178 lemma rex_inv_zero_pair_dx (R):
179 ∀I,L1,K2,V2. L1 ⪤[R,#0] K2.ⓑ[I]V2 →
180 ∃∃K1,V1. K1 ⪤[R,V1] K2 & R K1 V1 V2 & L1 = K1.ⓑ[I]V1.
181 #R #I #L1 #K2 #V2 #H elim (rex_inv_zero … H) -H *
183 | #Z #K1 #Y2 #V1 #X2 #HK12 #HV12 #H1 #H2 destruct
184 /2 width=5 by ex3_2_intro/
185 | #f #Z #Y1 #Y2 #_ #_ #_ #H destruct
189 lemma rex_inv_zero_unit_sn (R):
190 ∀I,K1,L2. K1.ⓤ[I] ⪤[R,#0] L2 →
191 ∃∃f,K2. 𝐈❨f❩ & K1 ⪤[cext2 R,cfull,f] K2 & L2 = K2.ⓤ[I].
192 #R #I #K1 #L2 #H elim (rex_inv_zero … H) -H *
194 | #Z #Y1 #Y2 #X1 #X2 #_ #_ #H destruct
195 | #f #Z #Y1 #K2 #Hf #HK12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/
199 lemma rex_inv_zero_unit_dx (R):
200 ∀I,L1,K2. L1 ⪤[R,#0] K2.ⓤ[I] →
201 ∃∃f,K1. 𝐈❨f❩ & K1 ⪤[cext2 R,cfull,f] K2 & L1 = K1.ⓤ[I].
202 #R #I #L1 #K2 #H elim (rex_inv_zero … H) -H *
204 | #Z #Y1 #Y2 #X1 #X2 #_ #_ #_ #H destruct
205 | #f #Z #K1 #Y2 #Hf #HK12 #H1 #H2 destruct /2 width=5 by ex3_2_intro/
209 lemma rex_inv_lref_bind_sn (R):
210 ∀I1,K1,L2,i. K1.ⓘ[I1] ⪤[R,#↑i] L2 →
211 ∃∃I2,K2. K1 ⪤[R,#i] K2 & L2 = K2.ⓘ[I2].
212 #R #I1 #K1 #L2 #i #H elim (rex_inv_lref … H) -H *
214 | #Z1 #I2 #Y1 #K2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
218 lemma rex_inv_lref_bind_dx (R):
219 ∀I2,K2,L1,i. L1 ⪤[R,#↑i] K2.ⓘ[I2] →
220 ∃∃I1,K1. K1 ⪤[R,#i] K2 & L1 = K1.ⓘ[I1].
221 #R #I2 #K2 #L1 #i #H elim (rex_inv_lref … H) -H *
223 | #I1 #Z2 #K1 #Y2 #Hi #H1 #H2 destruct /2 width=4 by ex2_2_intro/
227 lemma rex_inv_gref_bind_sn (R):
228 ∀I1,K1,L2,l. K1.ⓘ[I1] ⪤[R,§l] L2 →
229 ∃∃I2,K2. K1 ⪤[R,§l] K2 & L2 = K2.ⓘ[I2].
230 #R #I1 #K1 #L2 #l #H elim (rex_inv_gref … H) -H *
232 | #Z1 #I2 #Y1 #K2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
236 lemma rex_inv_gref_bind_dx (R):
237 ∀I2,K2,L1,l. L1 ⪤[R,§l] K2.ⓘ[I2] →
238 ∃∃I1,K1. K1 ⪤[R,§l] K2 & L1 = K1.ⓘ[I1].
239 #R #I2 #K2 #L1 #l #H elim (rex_inv_gref … H) -H *
241 | #I1 #Z2 #K1 #Y2 #Hl #H1 #H2 destruct /2 width=4 by ex2_2_intro/
245 (* Basic forward lemmas *****************************************************)
247 lemma rex_fwd_zero_pair (R):
248 ∀I,K1,K2,V1,V2. K1.ⓑ[I]V1 ⪤[R,#0] K2.ⓑ[I]V2 → K1 ⪤[R,V1] K2.
249 #R #I #K1 #K2 #V1 #V2 #H
250 elim (rex_inv_zero_pair_sn … H) -H #Y #X #HK12 #_ #H destruct //
253 (* Basic_2A1: uses: llpx_sn_fwd_pair_sn llpx_sn_fwd_bind_sn llpx_sn_fwd_flat_sn *)
254 lemma rex_fwd_pair_sn (R):
255 ∀I,L1,L2,V,T. L1 ⪤[R,②[I]V.T] L2 → L1 ⪤[R,V] L2.
256 #R * [ #p ] #I #L1 #L2 #V #T * #f #Hf #HL
257 [ elim (frees_inv_bind … Hf) | elim (frees_inv_flat … Hf) ] -Hf
258 /4 width=6 by sle_sex_trans, pr_sor_inv_sle_sn, ex2_intro/
261 (* Basic_2A1: uses: llpx_sn_fwd_bind_dx llpx_sn_fwd_bind_O_dx *)
262 lemma rex_fwd_bind_dx (R):
263 ∀p,I,L1,L2,V1,V2,T. L1 ⪤[R,ⓑ[p,I]V1.T] L2 →
264 R L1 V1 V2 → L1.ⓑ[I]V1 ⪤[R,T] L2.ⓑ[I]V2.
265 #R #p #I #L1 #L2 #V1 #V2 #T #H #HV elim (rex_inv_bind … H HV) -H -HV //
268 (* Basic_2A1: uses: llpx_sn_fwd_flat_dx *)
269 lemma rex_fwd_flat_dx (R):
270 ∀I,L1,L2,V,T. L1 ⪤[R,ⓕ[I]V.T] L2 → L1 ⪤[R,T] L2.
271 #R #I #L1 #L2 #V #T #H elim (rex_inv_flat … H) -H //
274 lemma rex_fwd_dx (R):
275 ∀I2,L1,K2,T. L1 ⪤[R,T] K2.ⓘ[I2] →
276 ∃∃I1,K1. L1 = K1.ⓘ[I1].
277 #R #I2 #L1 #K2 #T * #f elim (pr_map_split_tl f) * #g #Hg #_ #Hf destruct
278 [ elim (sex_inv_push2 … Hf) | elim (sex_inv_next2 … Hf) ] -Hf #I1 #K1 #_ #_ #H destruct
279 /2 width=3 by ex1_2_intro/
282 (* Basic properties *********************************************************)
286 #R * /3 width=3 by frees_sort, frees_atom, frees_gref, sex_atom, ex2_intro/
290 ∀I1,I2,L1,L2,s. L1 ⪤[R,⋆s] L2 → L1.ⓘ[I1] ⪤[R,⋆s] L2.ⓘ[I2].
291 #R #I1 #I2 #L1 #L2 #s * #f #Hf #H12
292 lapply (frees_inv_sort … Hf) -Hf
293 /4 width=3 by frees_sort, sex_push, pr_isi_push, ex2_intro/
297 ∀I,L1,L2,V1,V2. L1 ⪤[R,V1] L2 →
298 R L1 V1 V2 → L1.ⓑ[I]V1 ⪤[R,#0] L2.ⓑ[I]V2.
299 #R #I1 #I2 #L1 #L2 #V1 *
300 /4 width=3 by ext2_pair, frees_pair, sex_next, ex2_intro/
304 ∀f,I,L1,L2. 𝐈❨f❩ → L1 ⪤[cext2 R,cfull,f] L2 →
305 L1.ⓤ[I] ⪤[R,#0] L2.ⓤ[I].
306 /4 width=3 by frees_unit, sex_next, ext2_unit, ex2_intro/ qed.
309 ∀I1,I2,L1,L2,i. L1 ⪤[R,#i] L2 → L1.ⓘ[I1] ⪤[R,#↑i] L2.ⓘ[I2].
310 #R #I1 #I2 #L1 #L2 #i * /3 width=3 by sex_push, frees_lref, ex2_intro/
314 ∀I1,I2,L1,L2,l. L1 ⪤[R,§l] L2 → L1.ⓘ[I1] ⪤[R,§l] L2.ⓘ[I2].
315 #R #I1 #I2 #L1 #L2 #l * #f #Hf #H12
316 lapply (frees_inv_gref … Hf) -Hf
317 /4 width=3 by frees_gref, sex_push, pr_isi_push, ex2_intro/
320 lemma rex_bind_repl_dx (R):
321 ∀I,I1,L1,L2,T. L1.ⓘ[I] ⪤[R,T] L2.ⓘ[I1] →
322 ∀I2. cext2 R L1 I I2 → L1.ⓘ[I] ⪤[R,T] L2.ⓘ[I2].
323 #R #I #I1 #L1 #L2 #T * #f #Hf #HL12 #I2 #HR
324 /3 width=5 by sex_pair_repl, ex2_intro/
327 (* Basic_2A1: uses: llpx_sn_co *)
328 lemma rex_co (R1) (R2):
329 (∀L,T1,T2. R1 L T1 T2 → R2 L T1 T2) →
330 ∀L1,L2,T. L1 ⪤[R1,T] L2 → L1 ⪤[R2,T] L2.
331 #R1 #R2 #HR #L1 #L2 #T * /5 width=7 by sex_co, cext2_co, ex2_intro/
334 lemma rex_isid (R1) (R2):
336 (∀f. L1 ⊢ 𝐅+❨T1❩ ≘ f → 𝐈❨f❩) →
337 (∀f. 𝐈❨f❩ → L1 ⊢ 𝐅+❨T2❩ ≘ f) →
338 L1 ⪤[R1,T1] L2 → L1 ⪤[R2,T2] L2.
339 #R1 #R2 #L1 #L2 #T1 #T2 #H1 #H2 *
340 /4 width=7 by sex_co_isid, ex2_intro/
343 lemma rex_unit_sn (R1) (R2):
344 ∀I,K1,L2. K1.ⓤ[I] ⪤[R1,#0] L2 → K1.ⓤ[I] ⪤[R2,#0] L2.
345 #R1 #R2 #I #K1 #L2 #H
346 elim (rex_inv_zero_unit_sn … H) -H #f #K2 #Hf #HK12 #H destruct
347 /3 width=7 by rex_unit, sex_co_isid/
350 (* Basic_2A1: removed theorems 9:
351 llpx_sn_skip llpx_sn_lref llpx_sn_free
353 llpx_sn_Y llpx_sn_ge_up llpx_sn_ge
354 llpx_sn_fwd_drop_sn llpx_sn_fwd_drop_dx