1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "static_2/syntax/ac.ma".
17 (* APPLICABILITY CONDITION PREORDER *****************************************)
19 definition acle: relation ac ≝
20 λa1,a2. ∀m. ad a1 m → ∃∃n. ad a2 n & m ≤ n.
22 interpretation "preorder (applicability domain)"
23 'subseteq a1 a2 = (acle a1 a2).
25 (* Basic properties *********************************************************)
27 lemma acle_refl: reflexive … acle.
28 /2 width=3 by ex2_intro/ qed.
30 lemma acle_omega (a): a ⊆ 𝛚.
31 /2 width=1 by acle_refl/
34 lemma acle_one (a): ∀n. ad a n → 𝟏 ⊆ a.
35 #a #n #Ha #m #Hm destruct
36 /2 width=3 by ex2_intro/
39 lemma acle_eq_monotonic_le (k1) (k2):
40 k1 ≤ k2 → (ac_eq k1) ⊆ (ac_eq k2).
41 #k1 #k2 #Hk #m #Hm destruct
42 /2 width=3 by ex2_intro/
45 lemma acle_le_monotonic_le (k1) (k2):
46 k1 ≤ k2 → (ac_le k1) ⊆ (ac_le k2).
48 /3 width=3 by acle_refl, nle_trans/
51 lemma acle_eq_le (k): (ac_eq k) ⊆ (ac_le k).
53 /2 width=1 by nle_refl, acle_refl/
56 lemma acle_le_eq (k): (ac_le k) ⊆ (ac_eq k).
57 #k #m #Hm /2 width=3 by ex2_intro/