1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/arith/nat_plus.ma".
16 include "ground/arith/wf1_ind_nlt.ma".
17 include "static_2/syntax/lenv_length.ma".
18 include "static_2/syntax/append.ma".
20 (* APPEND FOR LOCAL ENVIRONMENTS ********************************************)
22 (* Properties with length for local environments ****************************)
24 lemma append_length: ∀L1,L2. |L1 + L2| = |L1| + |L2|.
25 #L1 #L2 elim L2 -L2 //
26 #L2 #I >append_bind >length_bind >length_bind //
29 lemma ltail_length: ∀I,L. |ⓘ[I].L| = ↑|L|.
30 #I #L >append_length //
33 (* Advanced inversion lemmas on length for local environments ***************)
35 (* Basic_2A1: was: length_inv_pos_dx_ltail *)
36 lemma length_inv_succ_dx_ltail: ∀L,n. |L| = ↑n →
37 ∃∃I,K. |K| = n & L = ⓘ[I].K.
38 #Y #n #H elim (length_inv_succ_dx … H) -H #I #L #Hn #HLK destruct
39 elim (lenv_case_tail … L) [| * #K #J ] #H destruct
40 /2 width=4 by ex2_2_intro/
41 @(ex2_2_intro … (J) (K.ⓘ[I])) // (**) (* auto fails *)
42 >ltail_length >length_bind //
45 (* Basic_2A1: was: length_inv_pos_sn_ltail *)
46 lemma length_inv_succ_sn_ltail: ∀L,n. ↑n = |L| →
47 ∃∃I,K. n = |K| & L = ⓘ[I].K.
48 #Y #n #H elim (length_inv_succ_sn … H) -H #I #L #Hn #HLK destruct
49 elim (lenv_case_tail … L) [| * #K #J ] #H destruct
50 /2 width=4 by ex2_2_intro/
51 @(ex2_2_intro … (J) (K.ⓘ[I])) // (**) (* auto fails *)
52 >ltail_length >length_bind //
55 (* Inversion lemmas with length for local environments **********************)
57 (* Basic_2A1: was: append_inj_sn *)
58 lemma append_inj_length_sn: ∀K1,K2,L1,L2. L1 + K1 = L2 + K2 → |K1| = |K2| →
61 [ * /2 width=1 by conj/
62 #K2 #I2 #L1 #L2 #_ >length_atom >length_bind
63 #H elim (eq_inv_zero_nsucc … H)
65 [ #L1 #L2 #_ >length_atom >length_bind
66 #H elim (eq_inv_nsucc_zero … H)
67 | #K2 #I2 #L1 #L2 #H1 >length_bind >length_bind #H2
68 lapply (eq_inv_nsucc_bi … H2) -H2 #H2
69 elim (destruct_lbind_lbind_aux … H1) -H1 #H1 #H3 destruct (**) (* destruct lemma needed *)
70 elim (IH … H1) -IH -H1 /3 width=4 by conj/
76 (* Basic_2A1: was: append_inj_dx *)
77 lemma append_inj_length_dx: ∀K1,K2,L1,L2. L1 + K1 = L2 + K2 → |L1| = |L2| →
80 [ * /2 width=1 by conj/
81 #K2 #I2 #L1 #L2 >append_atom >append_bind #H destruct
82 >length_bind >append_length #H
83 elim (succ_nplus_refl_sn (|L2|) (|K2|) ?) //
85 [ #L1 #L2 >append_bind >append_atom #H destruct
86 >length_bind >append_length #H
87 elim (succ_nplus_refl_sn … H)
88 | #K2 #I2 #L1 #L2 >append_bind >append_bind #H1 #H2
89 elim (destruct_lbind_lbind_aux … H1) -H1 #H1 #H3 destruct (**) (* destruct lemma needed *)
90 elim (IH … H1) -IH -H1 /2 width=1 by conj/
95 (* Advanced inversion lemmas ************************************************)
97 lemma append_inj_dx: ∀L,K1,K2. L+K1 = L+K2 → K1 = K2.
98 #L #K1 #K2 #H elim (append_inj_length_dx … H) -H //
101 lemma append_inv_refl_dx: ∀L,K. L+K = L → K = ⋆.
102 #L #K #H elim (append_inj_dx … (⋆) … H) //
105 lemma append_inv_pair_dx: ∀I,L,K,V. L+K = L.ⓑ[I]V → K = ⋆.ⓑ[I]V.
106 #I #L #K #V #H elim (append_inj_dx … (⋆.ⓑ[I]V) … H) //
109 (* Basic eliminators ********************************************************)
111 (* Basic_1: was: c_tail_ind *)
112 (* Basic_2A1: was: lenv_ind_alt *)
113 lemma lenv_ind_tail: ∀Q:predicate lenv.
114 Q (⋆) → (∀I,L. Q L → Q (ⓘ[I].L)) → ∀L. Q L.
115 #Q #IH1 #IH2 #L @(wf1_ind_nlt … length … L) -L #x #IHx * //
116 #L #I -IH1 #H destruct
117 elim (lenv_case_tail … L) [| * #K #J ]
118 #H destruct /3 width=1 by/