1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "static_2/syntax/bind.ma".
17 (* EXTENSION TO BINDERS OF A RELATION FOR TERMS *****************************)
19 inductive ext2 (R:relation term): relation bind ≝
20 | ext2_unit: ∀I. ext2 R (BUnit I) (BUnit I)
21 | ext2_pair: ∀I,V1,V2. R V1 V2 → ext2 R (BPair I V1) (BPair I V2)
24 (* Basic_inversion lemmas **************************************************)
26 fact ext2_inv_unit_sn_aux: ∀R,Z1,Z2. ext2 R Z1 Z2 →
27 ∀I. Z1 = BUnit I → Z2 = BUnit I.
28 #R #Z1 #Z2 * -Z1 -Z2 #I [2: #V1 #V2 #_ ]
32 lemma ext2_inv_unit_sn: ∀R,I,Z2. ext2 R (BUnit I) Z2 → Z2 = BUnit I.
33 /2 width=4 by ext2_inv_unit_sn_aux/ qed-.
35 fact ext2_inv_pair_sn_aux: ∀R,Z1,Z2. ext2 R Z1 Z2 →
36 ∀I,V1. Z1 = BPair I V1 →
37 ∃∃V2. R V1 V2 & Z2 = BPair I V2.
38 #R #Z1 #Z2 * -Z1 -Z2 #I [2: #V1 #V2 #HV12 ]
39 #J #W1 #H destruct /2 width=3 by ex2_intro/
42 lemma ext2_inv_pair_sn: ∀R,Z2,I,V1. ext2 R (BPair I V1) Z2 →
43 ∃∃V2. R V1 V2 & Z2 = BPair I V2.
44 /2 width=3 by ext2_inv_pair_sn_aux/ qed-.
46 fact ext2_inv_unit_dx_aux: ∀R,Z1,Z2. ext2 R Z1 Z2 →
47 ∀I. Z2 = BUnit I → Z1 = BUnit I.
48 #R #Z1 #Z2 * -Z1 -Z2 #I [2: #V1 #V2 #_ ]
52 lemma ext2_inv_unit_dx: ∀R,I,Z1. ext2 R Z1 (BUnit I) → Z1 = BUnit I.
53 /2 width=4 by ext2_inv_unit_dx_aux/ qed-.
55 fact ext2_inv_pair_dx_aux: ∀R,Z1,Z2. ext2 R Z1 Z2 →
56 ∀I,V2. Z2 = BPair I V2 →
57 ∃∃V1. R V1 V2 & Z1 = BPair I V1.
58 #R #Z1 #Z2 * -Z1 -Z2 #I [2: #V1 #V2 #HV12 ]
59 #J #W2 #H destruct /2 width=3 by ex2_intro/
62 lemma ext2_inv_pair_dx: ∀R,Z1,I,V2. ext2 R Z1 (BPair I V2) →
63 ∃∃V1. R V1 V2 & Z1 = BPair I V1.
64 /2 width=3 by ext2_inv_pair_dx_aux/ qed-.
66 (* Advanced inversion lemmas ***********************************************)
68 lemma ext2_inv_unit: ∀R,I1,I2. ext2 R (BUnit I1) (BUnit I2) → I1 = I2.
69 #R #I1 #I2 #H lapply (ext2_inv_unit_sn … H) -H
73 lemma ext2_inv_pair: ∀R,I1,I2,V1,V2. ext2 R (BPair I1 V1) (BPair I2 V2) →
75 #R #I1 #I2 #V1 #V2 #H elim (ext2_inv_pair_sn … H) -H
76 #V #HV #H destruct /2 width=1 by conj/
79 (* Basic properties ********************************************************)
81 lemma ext2_refl: ∀R. reflexive … R → reflexive … (ext2 R).
82 #R #HR * /2 width=1 by ext2_pair/
85 lemma ext2_sym: ∀R. symmetric … R → symmetric … (ext2 R).
86 #R #HR #T1 #T2 * /3 width=1 by ext2_unit, ext2_pair/
89 lemma ext2_dec: ∀R. (∀T1,T2. Decidable (R T1 T2)) →
90 ∀I1,I2. Decidable (ext2 R I1 I2).
91 #R #HR * #I1 [2: #T1 ] * #I2 [2,4: #T2 ]
92 [ elim (eq_bind2_dec I1 I2) #HI12 destruct
93 [ elim (HR T1 T2) -HR #HT12 /3 width=1 by ext2_pair, or_introl/ ]
94 @or_intror #H elim (ext2_inv_pair … H) -H /2 width=1 by/
95 | @or_intror #H lapply (ext2_inv_unit_sn … H) -H
97 | @or_intror #H lapply (ext2_inv_unit_dx … H) -H
99 | elim (eq_bind1_dec I1 I2) #HI12 destruct
100 /4 width=2 by ext2_inv_unit, ext2_unit, or_intror, or_introl/