1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/lib/bool.ma".
16 include "ground/arith/nat.ma".
18 (* ITEMS ********************************************************************)
20 definition sfull: relation2 nat nat ≝
24 inductive item0: Type[0] ≝
25 | Sort: nat → item0 (* sort: starting at 0 *)
26 | LRef: nat → item0 (* reference by index: starting at 0 *)
27 | GRef: nat → item0 (* reference by position: starting at 0 *)
30 (* unary binding items *)
31 inductive bind1: Type[0] ≝
32 | Void: bind1 (* exclusion *)
35 (* binary binding items *)
36 inductive bind2: Type[0] ≝
37 | Abbr: bind2 (* abbreviation *)
38 | Abst: bind2 (* abstraction *)
41 (* binary non-binding items *)
42 inductive flat2: Type[0] ≝
43 | Appl: flat2 (* application *)
44 | Cast: flat2 (* explicit type annotation *)
48 inductive item2: Type[0] ≝
49 | Bind2: bool → bind2 → item2 (* polarized binding item *)
50 | Flat2: flat2 → item2 (* non-binding item *)
53 (* Basic inversion lemmas ***************************************************)
55 fact destruct_sort_sort_aux: ∀s1,s2. Sort s1 = Sort s2 → s1 = s2.
56 #s1 #s2 #H destruct //
59 (* Basic properties *********************************************************)
62 ∀s1,s2. Decidable (sfull s1 s2).
63 /2 width=1 by or_introl/ qed-.
66 ∀I1,I2:item0. Decidable (I1 = I2).
67 * #i1 * #i2 [2,3,4,6,7,8: @or_intror #H destruct ]
68 [2: elim (eq_nat_dec i1 i2) |1,3: elim (eq_nat_dec i1 i2) ] /2 width=1 by or_introl/
69 #Hni12 @or_intror #H destruct /2 width=1 by/
73 ∀I1,I2:bind1. Decidable (I1 = I2).
74 * * /2 width=1 by or_introl/
77 (* Basic_1: was: bind_dec *)
79 ∀I1,I2:bind2. Decidable (I1 = I2).
80 * * /2 width=1 by or_introl/
81 @or_intror #H destruct
84 (* Basic_1: was: flat_dec *)
86 ∀I1,I2:flat2. Decidable (I1 = I2).
87 * * /2 width=1 by or_introl/
88 @or_intror #H destruct
91 (* Basic_1: was: kind_dec *)
93 ∀I1,I2:item2. Decidable (I1 = I2).
94 * [ #p1 ] #I1 * [1,3: #p2 ] #I2
95 [2,3: @or_intror #H destruct
96 | elim (eq_bool_dec p1 p2) #Hp
97 [ elim (eq_bind2_dec I1 I2) /2 width=1 by or_introl/ #HI ]
98 @or_intror #H destruct /2 width=1 by/
99 | elim (eq_flat2_dec I1 I2) /2 width=1 by or_introl/ #HI
100 @or_intror #H destruct /2 width=1 by/
104 (* Basic_1: removed theorems 21:
105 s_S s_plus s_plus_sym s_minus minus_s_s s_le s_lt s_inj s_inc
107 r_S r_plus r_plus_sym r_minus r_dis s_r r_arith0 r_arith1
108 not_abbr_abst bind_dec_not