1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/arith/nat_lt_minus.ma".
16 include "static_2/syntax/sh_props.ma".
18 (* SORT HIERARCHY ***********************************************************)
20 (* strict monotonicity condition *)
21 record sh_lt (h): Prop ≝
23 sh_next_lt: ∀s. s < ⇡[h]s
26 (* Basic properties *********************************************************)
28 lemma sh_nexts_le (h): sh_lt h → ∀s,n. s ≤ ⇡*[h,n]s.
29 #h #Hh #s #n @(nat_ind_succ … n) -n [ // ] #n #IH <sh_nexts_succ
30 lapply (sh_next_lt … Hh (⇡*[h,n]s)) #H
31 lapply (nle_nlt_trans … IH H) -IH -H /2 width=2 by nlt_des_le/
34 lemma sh_nexts_lt (h): sh_lt h → ∀s,n. s < ⇡*[h,↑n]s.
35 #h #Hh #s #n <sh_nexts_succ
36 lapply (sh_nexts_le … Hh s n) #H
37 @(nle_nlt_trans … H) /2 width=1 by sh_next_lt/
40 lemma sh_lt_nexts_inv_lt (h): sh_lt h →
41 ∀s,n1,n2. ⇡*[h,n1]s < ⇡*[h,n2]s → n1 < n2.
44 @(nat_ind_succ … n1) -n1
45 [ #s #n2 @(nat_ind_succ … n2) -n2
46 [ #H elim (nlt_inv_refl … H)
49 | #n1 #IH #s #n2 @(nat_ind_succ … n2) -n2
52 /3 width=3 by sh_nexts_lt, nlt_trans/
53 | #n2 #_ <sh_nexts_succ_next <sh_nexts_succ_next #H
54 /3 width=2 by nlt_succ_bi/
59 lemma sh_lt_acyclic (h): sh_lt h → sh_acyclic h.
63 @(nat_ind_succ … n1) -n1
64 [ #s #n2 @(nat_ind_succ … n2) -n2 [ // ] #n2 #_ <sh_nexts_zero #H
65 elim (nlt_inv_refl s) >H in ⊢ (??%); -H
66 /2 width=1 by sh_nexts_lt/
67 | #n1 #IH #s #n2 @(nat_ind_succ … n2) -n2
68 [ <sh_nexts_zero #H -IH
69 elim (nlt_inv_refl s) <H in ⊢ (??%); -H
70 /2 width=1 by sh_nexts_lt/
71 | #n2 #_ <sh_nexts_succ_next <sh_nexts_succ_next #H
72 lapply (IH … H) -IH -H //
77 lemma sh_lt_dec (h): sh_lt h → sh_decidable h.
79 @mk_sh_decidable #s1 #s2
80 elim (nat_split_lt_ge s2 s1) #Hs
81 [ @or_intror * #n #H destruct
82 @(nlt_ge_false … Hs) /2 width=1 by sh_nexts_le/ (**) (* full auto too slow *)
83 | @(nle_ind_sn … Hs) -s1 -s2 #s1 #s2 #IH #Hs12
84 elim (nat_split_lt_eq_gt s2 (⇡[h]s1)) #Hs21 destruct
85 [ elim (nle_split_lt_eq … Hs12) -Hs12 #Hs12 destruct
86 [ -IH @or_intror * #n #H destruct
87 generalize in match Hs21; -Hs21
89 lapply (sh_lt_nexts_inv_lt … Hh … H) -H #H
90 <(nle_inv_zero_dx n) in Hs12;
91 /2 width=2 by nlt_inv_refl, nle_inv_succ_bi/
92 | /3 width=2 by ex_intro, or_introl/
94 | -IH @or_introl @(ex_intro … 𝟏) // (**) (* auto fails *)
95 | lapply (nlt_trans s1 ??? Hs21) [ /2 width=1 by sh_next_lt/ ] -Hs12 #Hs12
96 elim (IH (s2-⇡[h]s1)) -IH
97 [3: /3 width=1 by sh_next_lt, nlt_minus_bi_sn/ ]
98 <nminus_minus_dx_refl_sn [2,4: /2 width=1 by nlt_des_le/ ] -Hs21
100 @or_introl @(ex_intro … (↑n)) //
101 | #H1 @or_intror * #n #H2 @H1 -H1 destruct
102 generalize in match Hs12; -Hs12
103 >(sh_nexts_zero h s1) in ⊢ (?%?→?); #H
104 lapply (sh_lt_nexts_inv_lt … Hh … H) -H #H
105 >(nlt_des_gen … H) -H
106 @(ex_intro … (↓n)) //