1 (**************************************************************************)
4 (* ||A|| A project by Andrea Asperti *)
6 (* ||I|| Developers: *)
7 (* ||T|| The HELM team. *)
8 (* ||A|| http://helm.cs.unibo.it *)
10 (* \ / This file is distributed under the terms of the *)
11 (* v GNU General Public License Version 2 *)
13 (**************************************************************************)
15 include "ground/xoa/ex_1_4.ma".
16 include "static_2/notation/relations/simple_1.ma".
17 include "static_2/syntax/term.ma".
19 (* SIMPLE (NEUTRAL) TERMS ***************************************************)
21 inductive simple: predicate term ≝
22 | simple_atom: ∀I. simple (⓪[I])
23 | simple_flat: ∀I,V,T. simple (ⓕ[I]V.T)
26 interpretation "simple (term)" 'Simple T = (simple T).
28 (* Basic inversion lemmas ***************************************************)
30 fact simple_inv_bind_aux: ∀T. 𝐒❨T❩ → ∀p,J,W,U. T = ⓑ[p,J]W.U → ⊥.
32 [ #I #p #J #W #U #H destruct
33 | #I #V #T #a #J #W #U #H destruct
37 lemma simple_inv_bind: ∀p,I,V,T. 𝐒❨ⓑ[p,I] V. T❩ → ⊥.
38 /2 width=7 by simple_inv_bind_aux/ qed-.
40 lemma simple_inv_pair: ∀I,V,T. 𝐒❨②[I]V.T❩ → ∃J. I = Flat2 J.
41 * /2 width=2 by ex_intro/
42 #p #I #V #T #H elim (simple_inv_bind … H)
45 (* Basic properties *********************************************************)
47 lemma simple_dec_ex (X): ∨∨ 𝐒❨X❩ | ∃∃p,I,T,U. X = ⓑ[p,I]T.U.
48 * [ /2 width=1 by simple_atom, or_introl/ ]
49 * [| /2 width=1 by simple_flat, or_introl/ ]
50 /3 width=5 by ex1_4_intro, or_intror/