]> matita.cs.unibo.it Git - helm.git/blob - matita/matita/contribs/ng_TPTP/CASC_2008/BOO007-2.ma
a wrong conjecture bypassed!
[helm.git] / matita / matita / contribs / ng_TPTP / CASC_2008 / BOO007-2.ma
1 include "logic/equality.ma".
2
3 (* Inclusion of: BOO007-2.p *)
4
5 (* -------------------------------------------------------------------------- *)
6
7 (*  File     : BOO007-2 : TPTP v3.7.0. Released v1.0.0. *)
8
9 (*  Domain   : Boolean Algebra *)
10
11 (*  Problem  : Product is associative ( (X * Y) * Z = X * (Y * Z) ) *)
12
13 (*  Version  : [ANL] (equality) axioms. *)
14
15 (*  English  :  *)
16
17 (*  Refs     : [Ver92] Veroff (1992), Email to G. Sutcliffe *)
18
19 (*  Source   : [Ver92] *)
20
21 (*  Names    : associativity [Ver92] *)
22
23 (*  Status   : Unsatisfiable *)
24
25 (*  Rating   : 0.22 v3.4.0, 0.25 v3.3.0, 0.21 v3.2.0, 0.14 v3.1.0, 0.00 v2.7.0, 0.18 v2.6.0, 0.17 v2.5.0, 0.00 v2.2.1, 0.44 v2.2.0, 0.57 v2.1.0, 0.75 v2.0.0 *)
26
27 (*  Syntax   : Number of clauses     :   15 (   0 non-Horn;  15 unit;   1 RR) *)
28
29 (*             Number of atoms       :   15 (  15 equality) *)
30
31 (*             Maximal clause size   :    1 (   1 average) *)
32
33 (*             Number of predicates  :    1 (   0 propositional; 2-2 arity) *)
34
35 (*             Number of functors    :    8 (   5 constant; 0-2 arity) *)
36
37 (*             Number of variables   :   24 (   0 singleton) *)
38
39 (*             Maximal term depth    :    3 (   2 average) *)
40
41 (*  Comments :  *)
42
43 (* -------------------------------------------------------------------------- *)
44
45 (* ----Include boolean algebra axioms for equality formulation  *)
46
47 (* Inclusion of: Axioms/BOO003-0.ax *)
48
49 (* -------------------------------------------------------------------------- *)
50
51 (*  File     : BOO003-0 : TPTP v3.7.0. Released v1.0.0. *)
52
53 (*  Domain   : Boolean Algebra *)
54
55 (*  Axioms   : Boolean algebra (equality) axioms *)
56
57 (*  Version  : [ANL] (equality) axioms. *)
58
59 (*  English  :  *)
60
61 (*  Refs     :  *)
62
63 (*  Source   : [ANL] *)
64
65 (*  Names    :  *)
66
67 (*  Status   :  *)
68
69 (*  Syntax   : Number of clauses    :   14 (   0 non-Horn;  14 unit;   0 RR) *)
70
71 (*             Number of atoms      :   14 (  14 equality) *)
72
73 (*             Maximal clause size  :    1 (   1 average) *)
74
75 (*             Number of predicates :    1 (   0 propositional; 2-2 arity) *)
76
77 (*             Number of functors   :    5 (   2 constant; 0-2 arity) *)
78
79 (*             Number of variables  :   24 (   0 singleton) *)
80
81 (*             Maximal term depth   :    3 (   2 average) *)
82
83 (*  Comments :  *)
84
85 (* -------------------------------------------------------------------------- *)
86
87 (* -------------------------------------------------------------------------- *)
88
89 (* -------------------------------------------------------------------------- *)
90 ntheorem prove_associativity:
91  (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
92 ∀a:Univ.
93 ∀add:∀_:Univ.∀_:Univ.Univ.
94 ∀additive_identity:Univ.
95 ∀b:Univ.
96 ∀c:Univ.
97 ∀inverse:∀_:Univ.Univ.
98 ∀multiplicative_identity:Univ.
99 ∀multiply:∀_:Univ.∀_:Univ.Univ.
100 ∀H0:∀X:Univ.eq Univ (add additive_identity X) X.
101 ∀H1:∀X:Univ.eq Univ (add X additive_identity) X.
102 ∀H2:∀X:Univ.eq Univ (multiply multiplicative_identity X) X.
103 ∀H3:∀X:Univ.eq Univ (multiply X multiplicative_identity) X.
104 ∀H4:∀X:Univ.eq Univ (multiply (inverse X) X) additive_identity.
105 ∀H5:∀X:Univ.eq Univ (multiply X (inverse X)) additive_identity.
106 ∀H6:∀X:Univ.eq Univ (add (inverse X) X) multiplicative_identity.
107 ∀H7:∀X:Univ.eq Univ (add X (inverse X)) multiplicative_identity.
108 ∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y Z)) (add (multiply X Y) (multiply X Z)).
109 ∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (add X Y) Z) (add (multiply X Z) (multiply Y Z)).
110 ∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y Z)) (multiply (add X Y) (add X Z)).
111 ∀H11:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) Z) (multiply (add X Z) (add Y Z)).
112 ∀H12:∀X:Univ.∀Y:Univ.eq Univ (multiply X Y) (multiply Y X).
113 ∀H13:∀X:Univ.∀Y:Univ.eq Univ (add X Y) (add Y X).eq Univ (multiply a (multiply b c)) (multiply (multiply a b) c))
114 .
115 #Univ ##.
116 #X ##.
117 #Y ##.
118 #Z ##.
119 #a ##.
120 #add ##.
121 #additive_identity ##.
122 #b ##.
123 #c ##.
124 #inverse ##.
125 #multiplicative_identity ##.
126 #multiply ##.
127 #H0 ##.
128 #H1 ##.
129 #H2 ##.
130 #H3 ##.
131 #H4 ##.
132 #H5 ##.
133 #H6 ##.
134 #H7 ##.
135 #H8 ##.
136 #H9 ##.
137 #H10 ##.
138 #H11 ##.
139 #H12 ##.
140 #H13 ##.
141 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10,H11,H12,H13 ##;
142 ntry (nassumption) ##;
143 nqed.
144
145 (* -------------------------------------------------------------------------- *)