1 include "logic/equality.ma".
3 (* Inclusion of: BOO031-1.p *)
5 (* -------------------------------------------------------------------------- *)
7 (* File : BOO031-1 : TPTP v3.7.0. Released v2.2.0. *)
9 (* Domain : Boolean Algebra *)
11 (* Problem : Dual BA 3-basis, proof of distributivity. *)
13 (* Version : [MP96] (equality) axioms : Especial. *)
15 (* English : This is part of a proof of the existence of a self-dual *)
17 (* 3-basis for Boolean algebra by majority reduction. *)
19 (* Refs : [McC98] McCune (1998), Email to G. Sutcliffe *)
21 (* : [MP96] McCune & Padmanabhan (1996), Automated Deduction in Eq *)
23 (* Source : [McC98] *)
25 (* Names : DUAL-BA-8-a [MP96] *)
27 (* Status : Unsatisfiable *)
29 (* Rating : 0.22 v3.4.0, 0.25 v3.3.0, 0.29 v3.2.0, 0.21 v3.1.0, 0.22 v2.7.0, 0.09 v2.6.0, 0.17 v2.5.0, 0.00 v2.4.0, 0.00 v2.2.1 *)
31 (* Syntax : Number of clauses : 12 ( 0 non-Horn; 12 unit; 1 RR) *)
33 (* Number of atoms : 12 ( 12 equality) *)
35 (* Maximal clause size : 1 ( 1 average) *)
37 (* Number of predicates : 1 ( 0 propositional; 2-2 arity) *)
39 (* Number of functors : 8 ( 5 constant; 0-2 arity) *)
41 (* Number of variables : 27 ( 8 singleton) *)
43 (* Maximal term depth : 4 ( 3 average) *)
47 (* -------------------------------------------------------------------------- *)
49 (* ----Self-dual distributivity: *)
51 (* ----3 properties of Boolean algebra and the corresponding duals. *)
53 (* ----Existence of 0 and 1. *)
55 (* ----Associativity of the 2 operations. *)
57 (* ----Denial of conclusion: *)
58 ntheorem prove_multiply_add_property:
59 (∀Univ:Type.∀X:Univ.∀Y:Univ.∀Z:Univ.
61 ∀add:∀_:Univ.∀_:Univ.Univ.
64 ∀inverse:∀_:Univ.Univ.
65 ∀multiply:∀_:Univ.∀_:Univ.Univ.
68 ∀H0:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply X Y) Z) (multiply X (multiply Y Z)).
69 ∀H1:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add X Y) Z) (add X (add Y Z)).
70 ∀H2:∀X:Univ.eq Univ (multiply X (inverse X)) n0.
71 ∀H3:∀X:Univ.eq Univ (add X (inverse X)) n1.
72 ∀H4:∀X:Univ.∀Y:Univ.eq Univ (add (multiply X (inverse X)) Y) Y.
73 ∀H5:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply (multiply (add X Y) (add Y Z)) Y) Y.
74 ∀H6:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (multiply X (add Y (add X Z))) X.
75 ∀H7:∀X:Univ.∀Y:Univ.eq Univ (multiply (add X (inverse X)) Y) Y.
76 ∀H8:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (add (multiply X Y) (multiply Y Z)) Y) Y.
77 ∀H9:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add X (multiply Y (multiply X Z))) X.
78 ∀H10:∀X:Univ.∀Y:Univ.∀Z:Univ.eq Univ (add (multiply X Y) (add (multiply Y Z) (multiply Z X))) (multiply (add X Y) (multiply (add Y Z) (add Z X))).eq Univ (multiply a (add b c)) (add (multiply b a) (multiply c a)))
103 nauto by H0,H1,H2,H3,H4,H5,H6,H7,H8,H9,H10 ##;
104 ntry (nassumption) ##;
107 (* -------------------------------------------------------------------------- *)